
f

SOFTWARE ENGINEERING LABORATORY SERIES

CR-189412

:8EL-I15-001_

-- =

i

IMPACT OF ADA AND
OBJECT-ORIENTED DESIGN IN

THE FLIGHT DYNAMICS DIVISIONAT
GODDARD SPACE FLIGHT CENTER

MARCH 1995

National Aeronautics and

Space Administration

(NASA-CR-I_g412) IMPACT F_F Ac_ AN0

0_JCCT-0RTE_JTE0 0ESIGN IN THE

FLIGHT DYNAMICS 01VISIGN AT GOC[ARD

SPACE FLIGHT CENTER (NASA. GoGdard

Space Flight Center) 92 p

G3/61 0053150

Goddard Space Flight Center
Greenbelt, Maryland 20771

i

/i

L

< :

?

2

A L

2

SOFTWARE ENGINEERING LABORATORY SERIES SEL-95-001

IMPACT OF ADA AND
OBJECT-ORIENTED DESIGN IN

THE FLIGHT DYNAMICS DIVISION AT
GODDARD SPACE FLIGHT CENTER

MARCH 1995

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC) and created to investigate the effectiveness of software

engineering technologies when applied to the development of applications software. The SEL was created in 1976

and has three primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (I) to understand the software development process in the GSFC environment; (2) to

measure the effect of various methodologies, tools, and models on the process; and (3) to identify and then to apply
successful development practices. The activities, findings, and recommendations of the SEL are recorded in the

Software Engineering Laboratory Series, a continuing series of reports that includes this document.

The major contributors to this document are

Sharon Waligora, Computer Sciences Corporation

John Bailey, Software Metrics, Inc.

Mike Stark, NASA/Goddard Space Flight Center

The SEL is accessible on the World Wide Web at

http://groucho.gsfc.nasa.gov/Code_550/SEL_hp.html

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

iii SEL-95-001

Contents

Foreword .. iii

Executive Summary .. ix

Section 1. Introduction .. 1

1.1 Background .. 1

1.2 Environment ... 1

1.2.1 Flight Dynamics Division .. 1

1.2.2 Software Engineering Laboratory and Process Improvement ... 2

1.2.3 Independent Assessment .. 3

1.3 Document Organization ... 3

Section 2. Experience With Ada in the FDD .. 5

2.1 Goals and Expectations ... 5

2.2 Project Experience ... 7

2.2.1 Dynamics Simulators .. 7

2.2.2 Telemetry Simulators .. 11

2.3 Research and Development Systems .. 15

2.3.1 Embedded Systems .. 15

2.3.2 Reusable Assets Framework and Components ... 16

2.4 Studies ... 17

2.4.1 GRODY/GROSS Parallel Development Experiment (1985-1989) ... 17

2.4.2 Reuse Study (1990-1991) .. 18

2.4.3 Portability Study (1989-1990) .. 19

2.4.4 Performance Study (1990-1991) ... 19

2.4.5 Ada Size Study (1991-1992) .. 19

2.5 Training ... 20

2.5.1 Initial Training .. 20

2.5.2 Project-Specific Training ... 21

2.5.3 Institutional Training .. 21

Section 3. Quantitative Analysis .. 23

3.1 Project Data .. 23

3.1.1 Size Measures ... 23

3.1.2 Language Feature Usage .. 24

3.2 Reuse ... 25

3.2.1 Different Reuse Methods ... 26

3.2.2 Adjusting FORTRAN Measures to Compensate for Different Reuse Methods 27

3.2.3 Software Size Differences Due to Generalization Approach and Language 28

V

11" I i x I z

SEL-95-001

3.2.4 ImpactofDifferentReusableSoftwareManagementApproaches..29
3.2_5 ComputingtheProductivityofReuse...29

3.3 ProcessEvolution...30

3.4 CostReduction..33

3.5 ScheduleCompression..35

3.6 Reliability...36
3.7 Performance..36

3.8 SummaryoftheComparisons...38

Section4. QualitativeAnalysis...39

4.1 VendorToolsandSupport...39

4.2 AdaPerspectivesWithintheFDD...40
4.2.1 UserPerspective..40
4.2.2 Developers'Perspective..41
4.2.3 ManagementPerspective...43

4.3 NetResult...45

Section5. ConclusionsandRecommendations...47

KeyFindings...47

TechnologyTransferLessonsLearned...49
Recommendations..50

NotetoReadersOutsidetheFDD..51

AppendixA. ProjectData..53

AppendixB. DetailedReuseAnalysis..63

AppendixC. DataCollectionInstruments...67

Acronyms..71
References...73
StandardBibliographyofSELLiterature...75

SEL-95-001 vi

Illustrations

Figures

1 SEL Process Improvement Paradigm ... 2

2 FDD Ada Activity Timeline ... 6

3 FDD Ada Goals and Experience .. 7

4 Maturing Use of Ada at the FDD ... 24

5 Verbatim Reuse Percentages for Ada Projects .. 25

6 Verbatim Reuse Percentages for FORTRAN Projects .. 26

7 Activity Distribution: All Ada vs. all FORTRAN Projects ... 30

8 Activity Distribution for Ada Projects .. 31

9 Activity Distribution for FORTRAN Projects .. 32

10 Average Effort to Deliver a Statement .. 33

11 Average Effort to Deliver Similar Functionality ... 34

12 Average Project Duration .. 35

13 Error Densities on Early and Recent Ada and FORTRAN Projects ... 36

14 Performance Times of Ada and FORTRAN Simulators ... 37

15 Language Preference for FDD Systems ... 41

16 Distribution of Developers' Ada Preference Scores ... 44

17 Growth of FDD Ada Software .. 45

Tables

1 Ada Project/Study Goals and Experience ... 8

2 Dynamics Simulator Project Data ... 9

3 Telemetry Simulator Project Data ... 11

4 Ada Efficiency Guidelines .. 20

5 Ada vs. FORTRAN Reuse Methods .. 27

6 FORTRAN and Ada Development Productivities .. 29

7 FORTRAN and Ada Development Productivities Including Black-Box Reuse .. 30

8 Ada Survey Responses for Developers Expressing Opinions ... 42

vii SEL-95-001

Executive Summary

Beginning in 1985, the Flight Dynamics Division (FDD) at NASA's Goddard Space Flight Center began

investigating Ada and, shortly thereafter, object-oriented design (OOD) as means of improving its products and

reducing development costs for its satellite flight dynamics software systems. The FDD's intention was to become

an Ada development "shop" within l0 years. This decision was based on widespread opinion in the software

engineering community, particularly among U.S. Government agencies, that Ada was "more than just another

programming language," that this language, in fact, represented a significant advance in software engineering

technology that would lead to better products and a more disciplined practice of software engineering. Ada had

been designed by the Department of Defense with the goal of providing a common language that would support the

portability of programs, tools, and personnel across many projects. Another goal was to provide, in Ada, a tool
beneficial for large-system development and long-term maintenance.

The Software Engineering Laboratory (SEL), which facilitates software process improvement within the FDD

through an organized measurement, research, and technology infusion program, selected Ada as one of several

software engineering technologies available at that time that had potential for significantly improving the local

software process and products. During its initial experimentation with the language, the SEL chose to combine Ada

with OOD to extend its impact throughout the full software development life cycle and to ensure that new design
approaches would be explored.

The FDD's investigation of Ada/OOD was conducted as a series of experimental projects and deliverable Ada

systems. Ada experiments and projects were assigned specific goals addressing different aspects of software

development, such as design concepts, software reuse, cost and schedule adherence, and system performance.

Progress toward these goals was guided and monitored by the SEL, and documented in study reports summarizing

the results and lessons learned from each of the Ada experiences. Project characteristic data for the Ada systems
were collected and stored in the SEL data base along with data for earlier FDD projects (before 1985) and

concurrent FORTRAN projects (1985-1994).

This report, commissioned by the FDD and the SEL, is the product of an in-depth investigation into the Ada

experience in this organization. Conducted by an outside consultant (Software Metrics, Inc.), this investigation
gathered together the sum of the research and experience described above; quantitative data (system size, effort,

errors, project duration, percent reuse, and performance) for all projects, both FORTRAN and Ada, active between

1985-1994; and the opinions of FDD personnel, both those directly involved in the transition and those simply

present in the environment during the period. These materials have been analyzed with a focus on the evolution of

local products and processes since Ada/OOD have been in use. Significant improvements in product characteristics

have been documented, as well as notable changes to the software development process. This investigation also

sought and identified the reasons why, 10 years after introducing this technology with an expressed intention of fully

transitioning to it, and after witnessing improvements in product and process, the FDD develops only 15-20% of its
software using Ada.

Although the overall assessment of this technology has shown it to be beneficial, it is unlikely that the FDD will

fully transition to Ada as its language of choice. Chief among the deterrents are the lack of mainframe development
environments and the high cost of viable Ada software development environments for workstations--the two

platforms on which the bulk of the FDD's systems are built. Furthermore, up until now there has been no

documented reason for the FDD to abandon FORTRAN as its primary implementation language. However, some of

the findings in this report, regarding maintenance and software size, show good reason to move away from
FORTRAN.

The key findings and technology transfer lessons learned from the FDD's Ada experience are summarized below.

Recommendations based on this assessment are made regarding the future use of Ada in this organization.

ix SEL-95-001

Key Findings

• Use of Ada and OOD in the FDD resulted in:

- Increased software reuse by 300%

- Reduced system cost by 40%

- Shortened cycle time by 25%

- Reduced error rates by 62%

• The experimentation with Ada/OOD served as a catalyst for many of the improvements seen in the FORTRAN

systems during the same period.

FORTRAN systems applying object-oriented concepts also showed significant improvement in reuse. Like the

Ada projects, higher reuse led to reduced cycle times and lower error rates on the FORTRAN projects.

However, they did not experience similar cost savings; use of Ada resulted in greater cost reductions for

systems with roughly comparable levels of reuse.

• Use of Ada resulted in smaller systems to perform more functionality; while generalization increased the size of

the FORTRAN systems.

• Lack of viable Ada development environments on the FDD's primary development platform severely hampered
the transition to Ada.

• The high cost of Ada development environments on workstations may deter future use of Ada as the FDD

transitions to open systems.

The introduction of Ada sparked much controversy within the FDD. At this time, most of the FDD workforce

is lukewarm toward using Ada, with two vocal minorities for and against its continued use. However, most

personnel support the use of object-oriented techniques.

Technology Transfer Lessons Learned

• Technology insertion takes a long time, especially when several technologies are combined or when the

technology affects the full development life cycle and requires a significant amount of retraining.

Parallel development experiments are an effective way of minimizing the risk of a major new technology to the

organization; however, the project using the new technology must be tightly managed to maximize value and

minimize negative effects.

• First impressions are very important; be careful to understand and set realistic expectations regarding the new

technology for everyone affected.

Project personnel will focus on and meet the goals set for them at the expense of those not explicitly stated. Be

careful to consider all aspects of the new technology when setting goals for pilot projects, and clearly state all
goals and their relative priority.

New technology advocates are essential to initiate and sustain the technology transfer process. However, if they

are not sensitive to the needs and concerns of the organization and its developers, they will impede rather than

facilitate the process.

• Initial language training is best accomplished by outside vendors. Local training should focus on how to apply

the language in the local environment.

SEL-95-001 x

Recommendations

The FDD should continue to use Ada whenever possible. This would include for those systems that reuse

existing Ada code and any other projects (or portions of projects) that are expected to be long-lived and can be

developed and deployed on an Ada-capable platform.

The FDD should build reusable software in a language that supports object-oriented constructs and consider

using specialized teams of experts to configure the reusable components for each mission. This would likely

improve the efficiency of the reuse process.

The FDD should investigate lower-cost alternative languages to support object-oriented development on

workstations. However, trade-off analyses should consider the cost of development environments, the

efficiency and quality of software development, and the ease and cost of long-term maintenance for the
languages under consideration.

Note to Readers Outside the FDD

Because the FDD uses a single language and develops small to mid-sized systems with relatively short life spans,

this organization was not able to apply Ada in the context for which it was originally designed. Hence, readers of

this evaluation should bear in mind that this study reports only one experience with this technology. As the findings

suggest, the language offers clear benefits and involves significant investment. The specific influential factors in

any one organization (e.g., software domain, hardware environment, long-term goals) must be considered in any

evaluation of Ada's applicability and effectiveness.

xi SEL-95-001

Section 1. Introduction

1.1 Background

In the early 1980s, the software engineering

community at large had great hopes and expectations

for the Ada language. Ada was considered to be

more than just another programming language.

Because it embodied several important software

engineering principles and contained features to

ensure good programming practices, its proper use

was expected to lead to advances in the entire

software development process. Furthermore, through

increased reuse, reliability, and visibility of products

developed using Ada, it was expected to reduce costs

and shorten project durations and to lead to better and

more manageable software products. Thus, the Ada

language was perceived as a significant advance in

software engineering that would lead to a more

disciplined software engineering practice throughout

the industry.

The Department of Defense (DoD) developed the

Ada language to help solve its software "crisis" (i.e.,

the exponentially growing amount of software to be

developed and maintained by the agency). The DoD

expected that, as a language that both encouraged and

supported software engineering principles and

practices, Ada would facilitate improved program

quality and maintainability and thereby reduce full

life-cycle software development costs. The DoD also

sought to curtail the proliferation of the many

languages in use on its software systems; its vision

was for Ada to become the standard language,

commonly used across many projects, thus enabling
the portability of software, tools, and personnel.

In 1984, DoD mandated that Ada be used on all of its

new software development projects. Shortly there-

after, other government agencies and software

companies began considering using Ada to develop

large systems that were expected to have long

lifetimes. For example, NASA mandated that Ada be

used on the Space Station Project in 1985, and the

Federal Aviation Agency selected Ada as its

language of choice for its Advanced Automation

System in 1987.

Beginning in 1985, the Flight Dynamics Division

(FDD) at Goddard Space Flight Center (GSFC)
began investigating Ada and, shortly thereafter,

object-oriented design (OOD) as means of improving

its products and reducing development costs for its

satellite flight dynamics software systems. The

FDD's intention was to become an Ada development

"shop" within 10 years. The Software Engineering

Laboratory (SEL), which facilitates software process

improvement within the FDD through an organized

measurement, research, and technology infusion

program, selected Ada as one of several software

engineering technologies available at that time that

had potential for significantly improving the local

software process and products. During its initial

experimentation with the language, the SEL chose to

combine Ada with OOD to extend its impact

throughout the full software development life cycle

and to ensure that new design approaches would be

explored that would maximize use of Ada features.*

Thus, the FDD, supported by the SEL, began its

"transition" to Ada which, after 10 years, has resulted

in only limited routine use of Ada in one application

domain. The organization faced and overcame many

of the technical challenges typically encountered

when using new technology. However, other aspects

of the technology infusion process were not (or could

not have been) anticipated, such as the degree of

difficulty and psychological factors involved in

infusing such a complex technology, and the shift in
direction that the Ada "market" would take.

1.2 Environment

1.2.1 Flight Dynamics Division

The Flight Dynamics Division spends approximately

$20million per year developing and maintaining

ground support software for NASA's scientific

satellites. This software is typically ground-based,

non-embedded, and scientific (algorithmic) in nature.

Applications include spacecraft attitude determina-

tion, control, and simulation; maneuver planning;

orbit determination and control; and mission analysis.

Systems range in size from 30thousand source lines

of code (KSLOC) to l million SLOC and are

*Strictly speaking, Ada 83 is not an object-oriented
language, because it does not support dynamic binding
and inheritance. However, it does support objects, and
OOD methodologies can take full advantage of Ada. Ada
95 more fully supports the object-oriented paradigm.

1 SEL-95-001

typicallydeveloped in FORTRAN on IBM main-

frame computers; however, some of the smaller

systems, such as the simulators, are developed on a

VAX minicomputer. The FDD has recently begun to

migrate to a distributed hardware environment using

an open systems architecture.

Currently, the FDD maintains approximately

4.5 million SLOC of operational software. Approxi-

mately 150-200 software engineers develop and

maintain the software, which is used to support up to

five launches per year and ongoing mission support

for 8-15 operational satellites.

In the FDD, hardware and system support software

(operating systems, compilers, and tools) are pro-

vided institutionally. Software is usually developed

and operated on the same hardware. Although this

eliminates the need to port software from the

development machine to the target machine, it

restricts the freedom of the development organization

to choose its development tools and environment.

Because over 75% of the computer resources are

used for spacecraft operational support in this

environment, FDD hardware selection and configura-

tion decisions tend to favor system operations over

development.

1.2.2 Software Engineering
Laboratory and Process
Improvement

In 1977, the FDD joined with its major software

contractor, Computer Sciences Corporation, and the
University of Maryland's Department of Computer

Science to form the Sottware Engineering Laboratory
(SEL) with the expressed purpose of improving the

way the FDD develops software. 1 Since then, the
SEL has established and matured a software measure-

ment program and developed a three-step process

improvement paradigm that facilitates product-based
process improvement.

The SEL's process improvement paradigm is shown

in Figure 1. The first and most important step is

understanding how an organization currently does

business and what it values. This is done by

characterizing the products generated and the process

that is used to produce them. In the second step,

assessing, the organization sets goals for improve-

ment, and experiments with process changes, such as

a new technology, that might help achieve its goals.

This is done by introducing a process change on pilot

projects, assessing its impact on the product, and

refining it if necessary before selecting it for use

ITERATE

UNDERSTANDING

ASSESSING

Know your software business

PACKAGING

Make improvements part of your business

• Update standards
• Refine training

Determine effective improvements

• Determine improvements and set goals
• Measure changed process and product
• Analyze impact of process change on product

° What are my software characteristics?
• What process do we use?

• What are our goals?

TIME

Figure 1. SEL Process Improvement Paradigm

SEL-95-001 2

throughoutthe organization. The final step is

packaging, where the successful new technologies

and procedures are integrated into the organization's

standards and training program so that all projects

may benefit from the changes.

Within the SEL, a group of researchers, analysts, and

support personnel (separate from FDD software

developers) performs process improvement activities.

They collect and analyze software project measure-

ments to produce models and standards for use by the

projects. They design and monitor experiments with

new technologies and modified procedures to

determine their applicability to the local environment

and refine/tailor them for optimum use in the FDD.

The SEL continually collects data and looks at its
information to build more accurate current models.

As projects and studies are completed, project data
and research results are added to the baseline to

increase its accuracy. In 1985, when the SEL/FDD

began working with Ada, the FDD baseline was

fairly well defined and a standard process had been

established based on best software engineering

practices, which included a well-defined life-cycle

model and a disciplined approach to project

management. A solid measurement program had

provided data for baseline models, including

• Cost models-e.g., productivity, effort profile,

code reuse, cost per change, schedule

• Reliability models-e.g., error rate, error detec-

tion rate. classes of errors (type and source)

• Process models-e.g., effort distributions by

activity and by phase, software component com-
pletion profile

This baseline and the SEL's established experimenta-

tion and analysis process provided a structure for

assessing the Impact of new technologies such as Ada
and OOD in this environment.

1.2.3 Independent Assessment

Since 1985, the FDD has completed 15 projects using
Ada and OOD, while the SEL has conducted a series

of experiments and studies concurrent with those

projects. The SEL has produced many reports and

papers about specific aspects of this work, all of

which reported encouraging results. But today,

nearly a decade later, the FDD still produces 80% of

its software in FORTRAN, despite the initial

expectation of transitioning to Ada and the positive

results on Ada projects. Meanwhile other languages,

such as C and C ÷÷, have emerged in the intervening

years as viable alternatives to both Ada and

FORTRAN for scientific application programming;

the FDD has recently begun using C and C _ on some

development efforts. In addition, the organization,

the standard process, and the experience of FDD

personnel have continued to evolve and mature.

The SEL conducted an assessment to quantify the

overall impact of Ada in the FDD, to determine why
Ada has not flourished, and to recommend future

directions regarding the use of Ada. In addition to

comparing Ada project results with the 1985

baseline, this study compared Ada project measures

with contemporaneous FORTRAN projects and

assessed the applicability of Ada/OOD within the

context of current organizational needs and goals.

This study also attempted to capture and quantify the

subjective factors affecting the technology transfer

process, i.e., attitudes and beliefs held about

Ada/OOD among users and others in the

environment. To detect and filter any organizational

bias for or against the technology, an independent
consultant, Software Metrics, Inc., served as the

primary investigator for this study. Preliminary

results of this study were reported at the Eighteenth
Annual Software Engineering Workshop in 1993. 2

1.3 Document Organization

This report describes the SEL's approach to

examining the suitability of Ada for use in the FDD

and documents FDD experience using the technology

on both experimental projects and on operational

flight dynamics software systems. It summarizes

nearly 10 years of experimentation and limited

operational use of Ada, draws conclusions about why

the Ada transition was less complete than expected,
and offers recommendations for the role of this

technology in the FDD's future. The document is

organized as follows:

• Section 2 describes how Ada was introduced in

the FDD and how its usage evolved. It describes

- All of the projects on which Ada/OOD was

used, both experimental and production

- SEL studies that focused on particular

organizational goals for the technology

- Ada/OOD training offered

3 SEL-95-001

Section3 presentstheresultsof quantitative
analysisofSELdatafromAdaprojects.Quanti-
tativemeasuresof theevolvingAdaexperience
arecomparedwiththe1985SELbaselineand
alsowith the evolving FORTRAN baseline

during the study period (1985-1994). Software
reuse, process, cost, schedule, reliability, main-

tainability, and system performance are
evaluated.

Section 4 presents the qualitative data on

attitudes and perceptions that were gathered by

the independent assessment team. Lessons
learned and factors that affected acceptance of

Ada and the smoothness of the technology

infusion are addressed, including vendor support.

Section 5 summarizes Ada's overall impact on

cost, schedule, reliability, and other organiza-

tional goals. It presents key findings and tech-

nology transfer lessons learned, and makes
recommendations for the future use of Ada in

this organization.

Appendix A presents the data tables used in the

analysis. Appendix B is a detailed analysis of

the reuse approaches used on the FORTRAN and

Ada projects. Appendix C includes the surveys

used for collecting subjective data.

SEL-95-001 4

Section 2. Experience With Ada in the FDD

The FDD's activities during its transition to Ada fall

into three categories that span overlapping phases

thoughout the study period: experimentation and

study, pilot operational use, and limited routine

operational use in one application domain. Figure 2

shows the timeline for the various projects, research

efforts, and studies conducted and in which activity/

transition phase they are included.

Experimentation and study have continued through-

out the transition period, providing a context for

investigating new approaches and resolving critical

issues. The Ada work began with an experiment in

1985 that was designed to foster learning about the

language and its applicability in the FDD while

posing minimal risk to the operational environment.

This initial experiment was conducted as a parallel

effort, where two versions of the same system were

developed: one in FORTRAN (operational version)

and another in Ada (study version). Following this

experiment, the FDD developed a series of research

prototypes to investigate new ways of using Ada that

would lead to future advancements (e.g., recon-

figurable software). Additionally, the SEL conducted

several studies to probe more deeply into issues

raised by pilot projects (e.g., performance) and to

better understand areas that the pilot projects would

not encounter (e.g., portability).

Pilot operational use began in 1987, when the FDD

began using Ada to develop small, low risk

operational simulators. Each of these pilot projects

focused on specific goals and contributed to the

evolution of the use of Ada in the FDD, in addition to

producing software systems that were used for actual

mission support. Finally in 1990, the FDD began to

use Ada routinely on one class of software systems,

telemetry simulators.

This discussion of the FDD's Ada transition

experience is organized as follows:

• Section 2.1 outlines the evolving organizational

goals that provided the context for the Ada
activities, and then summarizes the studies and

projects, focusing on the key objectives, accom-
plishments, and lessons learned from each effort.

To simplify the discussion, related activities are

grouped.

• Section 2.2 briefly describes each project that

developed operational software in Ada regardless

of whether it was considered an experiment, a

pilot, or routine development. Projects are in

two domains: dynamics simulators and telem-

etry simulators. A brief discussion of GRODY,

the initial experimental system, is included here

because it was an important building block for

design and code reuse on subsequent operational

systems.

• Section 2.3 presents experience on research and

development systems that have been developed

to investigate new approaches.

• Section 2.4 summarizes each of the SEL studies

conducted during the Ada transition, including

the initial parallel development experiment (the

GRODY system) and studies on reuse, port-

ability, performance, and software size.

• Section 2.5 discusses the various approaches to

training used during the transition and the
effectiveness of the different methods.

2.1 Goals and Expectations

The overall goal of the FDD was to reduce

development cost and cycle time for producing flight

dynamics mission support systems by maximizing
reuse. Ada and OOD had potential for significantly

increasing reusability. In addition, the FDD was

interested in adopting the high-quality software

engineering practices supported and encouraged by
these technologies. As local experience with Ada/

OOD grew, specific subgoals evolved within the

context of the overall goal, which helped establish

areas of focus for individual projects and studies.

The proliferation of languages (the DoD's original
concern), however, was not an issue because the

FDD had always used only one or two languages for

its development.

Over the past 10 years, the FDD has delivered

approximately 1 million lines of Ada code. Figure 3

illustrates the growth of Ada experience in this
environment. The curve shows the accumulated

amount of code (in KSLOC) as each project was

delivered (the time before the first project delivery is

foreshortened for clarity).

5 SEL-95-O01

Activities

Technology
Transition Phases

Projects

Dynamics Simulators

GRODY

GOADA

EUVEDSIM

Telemetry Simulators

GOESIM

UARSTELS

EUVETELS

SAMPEXTS

POWITS

TOMSTELS

FASTELS

Simulators in progress

Embedded Systems

TONS

Reusable Assets R&D

FDAS

GENSIM

COMPASS

FDDS/GSS

Studies

Initial Experiment (GRODY)

Reuse Study

Portability Study

Performance Study

Ada Size Study

Independent Assessment

1985 1986

m

1985 1986 1987 1988 1989

1993 1994

"/.////'//×

/_///////_

m

m

m

1990 1991 1992 1993 1994

Figure 2. FDD Ada Activity Timeline

SEL-95-001 6

Thefourregionsunderthecurvein Figure3givea
roughapproximationof theevolutionof goalsand
objectivesforthestudyanduseof Adain theFDD.
Initially,themainconcernwasfamiliarizationwith
the language,althoughthe initial projectsalso
stressedreusabilityasaprimaryobjective.Soon,the
focusturnedto the structuredgeneralizationof
systems,andthesuccessof thesegeneralizationsled
toanoverallimprovementin theefficiencyof the
Adasoftwaredevelopmentprocess.Recently,there
hasbeenanadditionalfocuson optimizingthe
developmentprocessspecificallyfor usewith the
Ada language. This optimized process has been
specified and documented in a recent supplement 3 to

the standard software development process guide-
book used by the FDD. 4 These Ada study goals for

reuse, generalization, and process provided the

framework for the evolving use of Ada in this
environment.

Each of the Ada projects and studies furthered the

FDD's understanding of Ada and the organization's

progress toward its overall goal. As short-term goals

guided and focused the projects, project experience

and study findings adjusted the FDD's course as it

transitioned to Ada. Table 1 provides a time-ordered

(by project midpoint) snapshot of the Ada project

goals and key experiences.

2.2 Project Experience

By mid 1994, the FDD had completed 10 production

projects in Ada using OOD. Because this technology

was considered to be a radical change in this

environment, the first project, GRODY, was a

controlled experiment where a parallel FORTRAN

system was built to the same specifications; the

FORTRAN system was intended to be used

operationally. This was followed by a series of

projects that focused on applying the technology in

new ways in continual pursuit of the organization's

goals. The following sections present the FDD's

project experience using Ada. Projects are grouped

by application type; applications include dynamics

simulators, telemetry simulators, and R&D systems.

2.2.1 Dynamics Simulators

Dynamics simulators perform closed-loop simulation

of a spacecraft's attitude control system. They

simulate the environment around the spacecraft, the
various attitude sensors, attitude determination and

attitude correction command generation based on

sensor readings, and the reaction of the onboard

control system to those commands. Flight dynamics

analysts use these simulators to analyze the

robustness of the spacecraft's attitude control system;

1000

200 GOESIM

GRODY

POWITS

TONSVAX

SAMPEXTS

EUVETELS

EUVEDSIM

FASTELS

TOMSTELS

Process

GOADA

1/87 1/88 1/89 1/90

*Physical lines, including comments and blank lines

1/91 1/92 1/93

Figure 3. FDD Ada Goals and Experience

7 SEL-95-001

Project or Study

GRODY Experiment
(parallel development)

GOADA

GENSIM

GOESIM

FDAS

UARSTELS

EUVETELS

Portability Study

EUVEDSIM

Reuse Study

TONS

Performance Study

Table 1. Ada Project�Study Goals and Experience

Goals

Explore the Ada language; measured
comparison with FORTRAN

Maximize reuse of GRODY

Build generalized simulator components

Deliver first-of-a-kind Ada system on
schedule and within budget

Assess usefulness of Ada to build
reconfigurable parts

Maximize future reuse

Maximize verbatim reuse; reduce effort

Investigate Ada portability by rehostJng
GOESIM from VAX to IBM mainframe

Maximize reuse; interface with FORTRAN
and Ada flight code

Understand what makes Ada components
reusable

Develop an embedded Ada system;
performance is critical

Understand cause of performance problems

Results/Key Lessons Learned

Ada and OOD work well together;
Training is required;
Performance is slow

Reused 28% of GRODY; had serious
integration problems, slow performance

Developed some generalized utilities,
specifications, and concepts

Delivered AdaTRAN on schedule and within
budget; code not reusable

Successfully used Ada generic packages to
build reconflgurable components

Developed a reusable generic architecture
and the corresponding reusable compon-
ents

Successfully reused 88% of UARSTELS
without change

Mainframe compilers are immature; Ada
software easily ported

Successfully reused 69% of GOADA;
smooth integration of all components

Identified OOD and Ada generics as reuse
facilitators

Easily met performance requirements;
encountered severe problems integrating
with hardware and support software; tools
available immature

Developed Ada efficiency guidelines

SAMPEXTS Minimize cost and schedule with high reuse Modified process for high reuse; significantly
lower cost and shorter schedule

POWlTS Maximize reuse of existing software to Major difficulties reusing existing code for
develop simulator for new domain; use high new domain; poor performance; cost and
reuse process schedule overruns

COMPASS Develop new architecture and reuse Generated specification and implementation
strategy for all future FDD missions concepts; produced generalized specifica-

tions for applications components and
designed system infrastructure

Ada Size Study Understand cost implications of Ada size Preliminary cost model for Ada systems
variation

TOMSTELS Use high reuse process; tune performance Routine successful project; good
performance

FASTELS Use high reuse process; tune performance Routine successful project; good
performance

in progress,..Build reconfigurable application software
components based on COMPASS concepts

FDDS/GSS

SEL-95-001 8

they use the simulator to model the spacecraft's

behavior under normal and various degraded
conditions, such as failed sensors or thrusters. These

simulators are used primarily to do prelaunch

analysis, but also are used in emergency situations to

model the spacecraft's reaction to a command

sequence when a real failure occurs during the

mission. Traditionally, dynamics simulators have
had rather crude user interfaces. Most of the effort

during development is spent on the verification of the

control laws and accuracy of the hardware models.

Dynamics simulators were chosen as the first flight

dynamics application to be built in Ada. They were

considered a good starting point for the following
reasons:

• They are relatively low-risk systems from the

operational support point of view; that is, they

are not used daily to provide mission operational

support.

• They were usually implemented on a VAX

computer where a viable Ada compiler and

development tools were available.

• They are medium-sized systems by FDD

standards (average size - 50K).

• They contain complex mathematical algorithms,

which is representative of most flight dynamics

systems.

To date, the FDD has developed three dynamics

simulators in Ada, all based on the same system

architecture with steadily increasing reuse. Key
system attributes/measures are shown in Table 2.

The GRO Dynamics Simulator in Ada

(GRODY) (1985-1988)

GRODY was the first Ada system developed in the

FDD. This project's major purpose was to experi-

ment with the Ada language to learn about it and to

evaluate its applicability to the environment. Early in

the project, the team selected OOD as an appropriate

design technology to combine with Ada. Because

GRODY was developed in parallel with a sister

FORTRAN system (GROSS), this project did not

have to produce an operational system. However,

the goal of producing code potentially reusable on

future deliverable systems influenced design and

coding decisions.

Project-specific measures for GRODY are shown in

Table 2. This project tried several alternative design

approaches before settling on one. In fact, the search

for an appropriate methodology led to development

of a local methodology. 5 The team developed

packages in parallel, but integrated them in a single

build. In addition, they developed a new screen-
oriented user interface that consumed a substantial

portion of the project's resources. The project team

made heavy use of package nesting and tasking, but

used generics and typing rather sparingly.

The FDD learned several lessons from this project.

Complete results of the GRODY experiment are

summarized in section 2.4.1, including an extensive

list of lessons learned. It is important to note a few

key lessons here that greatly influenced subsequent

projects:

• Heavy nesting and data coupling led to severe

recompilation overhead.

• Improper or excessive use of tasking led to

extremely slow performance with the available
hardware resources.

• Ada source code is larger than FORTRAN

equivalents when counting SLOC. The com-

parison of GRODY and GROSS (the operational

version) source code (without adjusting for

differences in functionality) revealed a 3:1 ratio
of Ada to FORTRAN.

Table 2. Dynamics Simulator Project Data

Project Name Size Overall Verbatim Effort Duration Error Rate
(KSLOC) Reuse Reuse (hours) (months) (per KSLOC)

GRODY 128K 0% 0% 23,244 39 1.8

GOADA 171K 29% 4% 28,056 34 2.4

EUVEDSIM 184K 69% 21% 20,775 23 0.7

9 SEL-95-001

The GOES Dynamics Simulator in Ada

(GOADA) (1987-1990)

The GOES Dynamics Simulator in Ada (GOADA)

project was managed as an operational software

development project. Its primary goals were to
produce an operational dynamics simulator using

Ada and to reuse as much of GRODY as possible.

The project met these goals, producing an operational

system that contained 171 KSLOC, of which 29%
were reused from GRODY; the entire GRODY user

interface was reused. This project ended up 22%

over budget and was delivered 25% late due to severe

integration problems.

GOADA used the standard FDD development

approach for simulators, i.e., with the exception of

limiting the use of Ada tasks, developers gave little

emphasis to performance issues; in fact, tradeoff

decisions tended to favor fidelity over performance
during design. This was a major mistake, because
GOADA turned out to be one of the slowest

simulators in FDD history-leaving the users and

other developers with the impression that Ada was

inefficient. Furthermore, although GOADA sub-

systems were developed in parallel, the system was

integrated in a single build. This delayed the detec-

tion of interface errors and led to increased system

integration cost and schedule.

The GOADA project applied lessons learned from

the GRODY project. They reduced the use of tasking

as their only attempt to improve performance, and
they unneslcd all packages that were reused from

GRODY to reduce recompilation overhead. This led

to a lower-than-expected level of verbatim reuse

(4%).

The system design made extensive use of Ada's

variant record structure and strings to create a highly
flexibic central data structure. This allowed units to

be loosely coupled, which helped facilitate recom-

pilation of changes, but it did not allow the Ada

compiler to chcck the data types and, as a result,

many interface problems surfaced during system

integration. Use of the variant records also led to

excessive memory requirements on the VAX, which

degraded system performance.

This project contributed several key lessons learned

to the SEL's understanding of Ada and OOD:

• Performance should not be taken for granted

when using new languages. Even when

performance requirements are not specified,

performance should be considered in the design

phase and benchmarking done to understand

performance impacts of design decisions.

Unnesting significantly reduces recompilation

requirements.

Because of the size and complexity of these

systems, multiple builds should be used.

Use of variant records defeats the interface

checking feature of the Ada compiler and uses

excessive memory. If variant records must be

used, the process should be adjusted to

compensate for the lack of interface checking.

The EUVE Dynamics Simulator (EUVEDSIM)

(1988-1990)

The EUVE Dynamics Simulator (EUVEDSIM) was

the last dynamics simulator built in the FDD. At the

end of the system testing phase of this project, the
users determined that they no longer needed

dynamics simulators to perform their analysis;

although EUVEDSIM was thoroughly system tested

it was never formally acceptance tested by the user

organization. Nevertheless, this project produced an

operational dynamics simulator that contained
184KSLOC.

One unique aspect of this project was that the

simulator was to integrate with the actual onboard

control software, part of which was implemented in

Ada and part of which was implemented in

FORTRAN. The EUVEDSIM project used proto-

typing during the design phases to learn how to inter-

face FORTRAN and Ada components. It turned out

to be fairly easy to interface between Ada and other

languages on the VAX.

The other goals of this project were to continue to

maximize reuse and to experiment with a build

approach to eliminate the integration problems
experienced on GOADA. Careful planning and

strong management led the EUVEDSIM project to a

successful completion. Overall reuse rose to 69%,
while verbatim reuse increased to 21% because much

of the code that was reused with revisions by
GOADA could now be reused verbatim. Unfortu-

nately, the variant record data structure was deeply
embedded in the reused code and it came with the

reuse. At this point, the FDD opted to maximize

reuse rather than redesign for efficiency. The SEL,

meanwhile, conducted a performance study (see

section 2.4.4) to fully understand the relationship

between design and coding decisions and run-time

SEL-95-001 ! 0

performance, and, late in the EUVEDSIM project,

some changes were made to improve performance

based on the results of that study.

EUVEDSIM's major contribution to the FDD's

understanding of the Ada/OOD process was its inno-

vative build strategy. EUVEDSIM was developed

and integrated in three builds, building the inde-

pendent packages/subsystems first and the dependent
parts last. Basically, the system was built from the

inside out. This worked extremely well and integra-

tion went very smoothly. It also minimized rework

and the impact of changes, because most changes
occur in the algorithms, which are located in the

independent packages in EUVEDSIM. Dependent

parts of the code, such as the user interface, were

integrated last instead of first as was common in this

environment previously. In addition, code reading

and unit testing standards were rigorously enforced;
developers were not allowed to depend on the Ada

compiler's safety net to catch their mistakes. This

led to higher quality units that were easier to
integrate.

This project demonstrated the following key lessons:

A build strategy that is based on data and

package dependencies works well for Ada/OOD

systems. System integration went very smoothly

and rework was kept to a minimum.

Programmers discovered that the error checking
provided by the Ada compiler is not a "silver

bullet." Human beings still must check for

indirect interfaces and accuracy of algorithms,

for example. This fact was contrary to their

initial belief about Ada's capabilities, which

perhaps had come about from reading the liter-

ature and listening to Ada language promoters.

• Code reading is an effective way to catch

problems that the compiler cannot. For example,

the EUVEDSIM project carefully checked the

interfaces during code reading, because they

were aware of the compilation problems
associated with the variant records structure.

2.2.2 Telemetry Simulators

Telemetry simulators produce simulated attitude

telemetry that is used to test a spacecraft's Attitude

Ground Support System (AGSS). They are batch

programs that, based on a set of input parameters,

model the spacecraft's attitude sensors, produce

sensor readings in engineering data units, convert the

data into bit streams, and pack the information into

telemetry streams according to one or more telemetry

formats. The size of each telemetry simulator and the

amount of processing it must do is directly related to

the number of telemetry formats and their associated

data rate for the spacecraft. Telemetry simulators are

primarily used before launch to test the AGSS and to

provide simulated data for prelaunch operational

simulations and training exercises. They are also

used during missions to test modifications to the
AGSS.

To date, the FDD has built seven telemetry

simulators using Ada. All but the first one are based
on the same generic architecture, which was created

for the FDD's second Ada telemetry simulator

project, UARSTELS. Although the first few systems

were closely monitored and considered to be pilots,
building telemetry simulators in Ada has become a

standard way of doing business in the FDD since

around 1990. Through exceptionally high levels of

reuse, telemetry simulators now cost 40% less to

produce, are delivered in 50% less time, and have

85% fewer errors during development when com-

pared with the 1985 baseline for these systems.

Project attributes for the telemetry simulators are
shown in Table 3.

Table 3. Telemetry Simulator Project Data

Project Name Size Overall Verbatim Effort Duration Error Rate
(KSLOC) Reuse Reuse (hours) (months) (errors/KSLOC)

GOESIM 92K 29% 12% 13,658 23 1.4

UARSTELS 68K 35% 17% 11,526 22 2.2

EUVETELS 67K 96% 88% 4,727 19 0.1

SAM PEXTS 61K 95% 85% 2,516 11 0.2

POWlTS 68K 69% 39% 11,695 26 1.2

TOMSTELS 52K 97% 75% 3,839 10 0.1

FASTELS 65K 92% 64% 6,039 15 0.5

11 SEL-95-001

The GOES Telemetry Simulator (GOESIM)

(1987-1989)

The GOES Telemetry Simulator (GOESIM) was the

first telemetry simulator developed in Ada. |ts goals

were almost the opposite of the GRODY project

goals. The GOESIM project was to demonstrate that

an Ada system could be delivered on time and within

budget. Tradeoffs were to favor schedule and cost

over language exploration. The system was also to

reuse as much code from GRODY as was possible.

The project team comprised people with little or no
Ada experience; a few had flight dynamics

experience. However, the team received Ada training

before and during project start-up.

The decision to use Ada came late on this project.

Both FORTRAN and Ada were being considered up
until the preliminary design review (PDR), at which

time upper management committed to using Ada.

This constrained the preliminary design to a

FORTRAN-like structured design, which, due to

budget and time constraints, was never redesigned

after Ada was chosen. Thus the system made little
use of Ada features and was coded in what is

commonly referred to as AdaTRAN.

The project met its goals. GOESIM, comprising

92 KSLOC, was developed in two builds driven by

user needs. It was delivered on schedule with only
minor cost overruns well within the tolerance that

was typical for flight dynamics systems. Only small
utilities could be reused from GRODY, and even that

was difficult, causing the GOESIM team to write
extra code to interface with the reused utilities. Thus,

GOESIM only achieved 29% reuse.

GOESIM contributed the following key lessons to the

FDD's understanding of Ada:

• Operational schedules can be met on a first-of-a-

kind Ada system, if a conservative approach is

taken and experimentation is limited.

• To take full advantage of Ada, early commitment

to using the language is needed; i.e., before the

design phase starts.

• It is very difficult to reuse object-oriented parts

in a structured design.

The UARS Telemetry Simulator (UARSTELS)

(1988-1989)

The UARS Telemetry Simulator (UARSTELS)

project broke new ground and laid the foundation for

the FDD's future use of Ada. Project personnel, who

included several experienced Ada developers,

introduced a new generalized architecture that used

generics extensively to facilitate future reuse. The

project goals were to deliver an operational simulator

on time and within budget and to continue to
maximize reuse.

After analysis of GOESIM showed that there was

little potentially reusable code there, the UARSTELS

team proposed that they pursue the goal of

maximizing reuse by focusing on building for future

reuse rather than by reusing existing products. They

performed domain analysis for two similar

spacecraft, UARS and EUVE, for which simulators

would be built almost concurrently. This helped the

team identify common elements and recognize where
and how a simulator should be generalized. The

resulting object-oriented design isolated and

packaged functionality and its data for each space-

craft element so that each element could be replaced

or reused easily without affecting the rest of the

system. The system was implemented using Ada
generics so that only parameterized instantiation

would be required to tailor packages rather than code

modification. This was expected to facilitate
verbatim reuse.

The project met its goals. The operational
UARSTELS was delivered on time and within

budget. Interestingly, UARSTELS (68 KSLOC) was

smaller than GOESIM (92 KSLOC) even though

UARSTELS contained more functionality.

UARSTELS also required substantially more
memory to execute than did GOESIM; this slowed

the simulator down due to "page thrashing."

UARSTELS contributed the following lessons to the

FDD's understanding of Ada/OOD:

• Use of generics leads to large memory require-

ments on the VAX due to the way DEC Ada
implements generics.

• Heavy use of generics shrinks overall source
code size, but increases executable size. SLOC

SEL-95-001 12

isnotagoodmeasureof functionality in Ada

systems.

Heavy use of generics makes the design harder

to understand for Ada novices, including

managers and users who must review it.

The EUVE Telemetry Simulator (EUVETELS)
(1989-1990)

The EUVE Telemetry Simulator (EUVETELS)

project's primary goal was to deliver an operational

simulator on time and within budget while reusing

UARSTELS extensively. Although extremely high

reuse was predicted for this system, the project was

planned fairly conservatively to ensure a successful

delivery. The project was monitored closely to

determine the impact of high reuse on effort and

schedule and their allocation to life-cycle phases.

Ninety-six percent of EUVETELS (67 KSLOC) was

reused from UARSTELS, of which 88% was

verbatim reuse. As a result, the project achieved

record high productivity and reliability rates. Due to

this high level of verbatim reuse, EUVETELS

created a common source code library and experi-

mented with configuration management strategies to

deal with reused code that was being changed. This

was particularly challenging because the UARSTELS

and EUVETELS developments were going on in

parallel; thus EUVETELS was trying to reuse a

moving target.

The EUVETELS demonstrated the following key
lessons:

• Use of generics leads to improved verbatim
reusability.

• Heavy nesting of generics makes the system

complex and, therefore, hard to understand for
reusers and maintainers. Better documentation is

required.

• Configuration management procedures must be

defined early in the project's life, when reusing a

large amount of software.

• Verbatim reuse dramatically improves produc-

tivity and reliability.

The SAMPEX Telemetry Simulator

(SAMPEXTS) (1990-1991)

The SAMPEX Telemetry Simulator (SAMPEXTS)

project's goal was to minimize development cost

while maximizing software reuse. As expected, this

project achieved extremely high levels of reuse; 95%

of SAMPEXTS (60 KSLOC) was reused from either

UARSTELS or EUVETELS, with 85% reused

verbatim. Development costs were down as well;

SAMPEXTS was developed for 20% the cost of

developing the system from scratch.

This project met its goal of reduced development cost

by streamlining the development process. Reuse

analysis was done early during the requirements

definition phase and as a result the requirements and

functional specifications document specified modifi-
cations to UARSTELS and EUVETELS rather than

whole system functionality. Project personnel

collapsed the preliminary and detailed design phases

into a single design phase and held a combined

PDR/criticai design review (CDR). In addition, they

modified the UARSTELS system description and

user's guide documents during the design phase

rather than generating new design documents.

System testing was extremely smooth and finished

ahead of schedule. Only 10 discrepancies were

uncovered during the system and acceptance testing

phases combined, resulting in a significantly lower

system error rate of 0.2 errors per KSLOC.

Disciplined code reading, inspections, and unit

testing contributed to the improved reliability.

The SAMPEXTS demonstrated the following key
lessons:

• A single design phase that culminates in a

combined PDR/CDR works very well for high-

reuse systems.

• High reuse of existing Ada software (that was

designed for reuse) results in significant savings

when producing very similar application

software within the same problem domain.

• High reuse results in significantly fewer

development errors, thus testing goes smoother
and faster.

The WIND/POLAR Telemetry Simulator

(POWITS) (1990-1992)

The WIND/POLAR Telemetry Simulator (POWITS)

project's goal was to produce a telemetry simulator

that could be used to support two missions, the

Interplanetary Physics Laboratory (WIND) and the

Polar Plasma Laboratory (POLAR). At the onset, the

FDD expected this to be a routine high-reuse Ada

project. No special goals were set. However, several

13 SEL-95-001

seeminglysmalldifferencesbecamemajorobstacles
fortheteam.

POWITSsupportedtwo spacecraftwith spin-
stabilizedattitudecontrolsystems,ratherthanthe
three-axis-stabilizedcontrolsystemthatwasmodeled
inallofthepreviousAdatelemetrysimulators.This
essentiallycreatedanewtelemetrysimulatordomain,
whichcausedmuchof theexistingsoftwareto
requiremodification.RetrofittingtheUARSTELS
architecturefor spin-stabilizedapplicationswas
extremelydifficult. In addition,theresultingdesign
wasnot optimalfor a spin-stabilizedspacecraft,
causingthesystemtoperformpoorly.Thesystem
neverdidmeetitsperformancerequirements.

POWlTSalso markedthe first reuse of the

UARSTELS architecture and software by a totally

independent team; all of the other simulator teams

included at least one member who had developed
UARSTELS. As a result, the POWlTS team lacked

insight into the UARSTELS code, which made

reusing it more difficult. This reiterated for the FDD
that, although the extensive use of Ada generics

contributed to high verbatim reuse, the code requires

familiarity or documentation for it to be understood

and reused efficiently.

The POWlTS team met its goal of producing an

operational simulator to support two spacecraft, but

late. Delivered 7 months after its original target date,

POWlTS contained 68 KSLOC, of which 69% was
reused and 39% reused verbatim. Most team

members agree that if they had understood the

existing architecture better, they would have realized

the true impact of the change in attitude control

systems and would have spent more time and effort

investigating design alternatives, rather than trying to

force fit UARSTELS. Both implementation and

acceptance testing took much longer than expected:

implementation due to the extent of code

modifications required, and acceptance testing due to

testing for two spacecraft.

POWlTS contributed the following lessons to the

FDD's understanding of Ada/OOD:

• Exception handling needs to be def'med in detail

during design. Every procedure/function should

have an exception handler.

• Nested Ada generics make reusable code very

hard to understand. Additional diagrams that

show the overall system structure are needed to

supplement the object diagrams that focus on

subsystem or package composition one layer at a
time.

Ada code is not self-documenting. Novice Ada

developers found the in-line commentary in the

reused software to be very sparse compared with

typical flight dynamics FORTRAN systems,
while the code itself was harder to understand.

Developers should include more comments in

code that is designed for reuse.

Code reuse cannot be assumed; it must be

carefully analyzed on a case by case basis. Each

project must evaluate potentially reusable

systems, subsystems, and components con-

sidering the project's functional, operational, and

performance requirements.

The FAST Telemetry Simulator (FASTELS)
and TOMS Telemetry Simulator (TOMSTELS)

(1992-1993)

By 1992, FDD's development of telemetry simulators

in Ada had become routine. In addition, project plans

were regularly based on expectations of high

verbatim reuse. The FAST Telemetry Simulator

(FASTELS) and TOMS Telemetry Simulator

(TOMSTELS) projects, which began in 1992, had

similar goals. Their primary goal was to produce

operational telemetry simulators while maximizing

reuse and guaranteeing acceptable system perform-

ance. Project schedules were now set shorter from
the start based on the SAMPEXTS success with the

modified process for high reuse. Using the type of

attitude control system as a discriminator (i.e., spin-

or three-axis-stabilized), FASTELS reused POWlTS,
and TOMSTELS reused UARSTELS and

SAMPEXTS, respectively.

The only project concern that still remained regarding

the Ada language was system performance. Higher

data rates and modeling requirements were expected
to severely tax the already sluggish Ada software

being reused. Both projects benchmarked perform-

ance and prototyped performance enhancements

during design to deal with this risk. As a result, both

simulators met or exceeded their performance

requirements.

Both projects delivered acceptable operational sim-
ulators on schedule. These projects both used the

modified high-reuse process that collapsed

preliminary and detailed design into one phase and

held only one design review, confirming that the new

process worked well. Developers who had not

SEL-95-001 14

workedontelemetrysimulatorspreviouslycontinued
to notethattheyhadgreatdifficultyunderstanding
thehighlygeneralarchitectureandnestedgeneric
codeinthereusedsystems.

Reviewof thesoftwaredevelopmenthistoryreports
foundnolessonslearnedregardingtheAdalanguage
fromeitherproject.This indicates that the use of

Ada truly has become routine on telemetry simulator

projects. As of late 1994, all future telemetry

simulators are planned to be implemented in Ada;

however, a new architecture and different design and

implementation concepts will be used beginning in
1995. See the discussion of Reusable Assets

Framework and Components later in this section.

2.3 Research and

Development Systems

As part of the investigation of Ada and OOD, the

FDD developed several R&D systems to help them
understand the drawbacks and benefits of new

approaches and applications. From these efforts, the

organization learned about the challenges of

developing embedded systems and also developed

and refined an approach to creating and man-
agingreusable assets. That research has set the
direction for the FDD's formalization and

exploitation of reusable components.

2.3.1 Embedded Systems

The FDD rarely builds embedded systems because its

main charter is to support ground data processing. In
fact, only a very small percentage of NASA's

software is embedded; this is mostly onboard control

software for satellites and manned spacecraft. In

1989, the FDD began developing a prototype to

demonstrate the feasibility of performing spacecraft

navigation computations onboard rather than on the

ground in the flight dynamics facility. They chose to

implement the prototype using Ada, taking advantage

of the opportunity to use the language for an
embedded application, the domain for which it was

originally designed.

The TDRSS Onboard Navigation System

(TONS) (1989-1991)

The TDRSS Onboard Navigation System (TONS)

was developed in Ada on a VAX using the TARTAN

Ada development environment and cross-compiler.

The system was targeted to execute on dual MIL-

STD-1750A microprocessors built by Texas

Instruments. Both the language and the hardware

were chosen for compatibility with the other onboard

control systems on the EUVE spacecraft.

Performance, in terms of processing speed and

memory consumption, was of great concern on this

project. The design team performed a thorough

compiler evaluation, examining output object code

for every language construct, to determine efficiency

guidelines for coding. This was extremely success-

ful. The final product easily met its very challenging

performance requirements.

However, the FDD's experience building this

embedded system was discouraging. The TONS

project fought a never-ending battle against subtle,

undocumented, and apparently unknown incompati-
bilities between the 1750A hardware and the

TARTAN Ada support software. Neither the 1750A

nor the TARTAN Ada development tools provided a

standard, mature, working environment. Because the

diagnostic tools were extremely primitive, project

personnel depended on hot-line vendor support to

help isolate and resolve problems. However, when

the team encountered significant problems, vendors

were unable to provide adequate support The team

had been assured at the start of the project that

modifying the TARTAN "kernel" to operate in dual-

processor mode was not only possible, but

straightforward.

The team's development approach was first to

develop the software on the VAX using the

efficiency guidelines and then to test it on the VAX
to verify the complex algorithms before moving it to

the limited resources of the 1750A. This approach

worked well. The team also developed the dual-

processor communication software and modified the

TARTAN kernel and tested it before porting the

application software to the 1750A.

While porting the code to the 1750A, the TONS team
encountered more difficulties and inconveniences

involving different number precisions and restruc-

turing the code to be able to use the TARTAN

debugger. Their problems compounded when they

tried to integrate all parts of the system and execute

in dual-processor mode. Each processor would

operate correctly when only a small driver was

executing on the other processor, but the team could

never get all system components to function on both

processors simultaneously. The project ended up
restructuring the system to operate on only one

processor and delivered that system to support the

15 SEL-95-001

experiment. On the positive side, the team felt that

working in Ada had allowed them to restructure the

system very easily and quickly.

Although the failed dual-processing problem was
never solved, discussions with the vendors and other

experienced Ada programmers point to the large size

of the TONS executable as a major contributor to the

problem. Most embedded systems are small and

operate within a single memory page, while TONS

spanned many pages. Unfortunately, embedded

navigation computations are very complex and
require quite a bit of space.

2.3.2 Reusable Assets Framework

and Components

The FDD developed several prototypes to gain an

understanding of the importance of architecture,

programming language, and library support on the
reconfigurability of reusable software components.

After completing the prototypes and learning from

real project experience, the FDD initiated an effort to

build a new project support environment and a

repository for reusable application code that would

facilitate the rapid construction of future flight

dynamics ground systems and simulators from large-

scale reusable components. To date, Ada has been

the FDD's language of choice for these components,

which support a broad range of flight dynamics

applications.

The Flight Dynamics Analysis System

(FDAS) (1986--I 989)

The Flight Dynamics Analysis System (FDAS) was

the FDD's first effort to use Ada to explore
reconfigurable architectures. FDAS was a prototype

software reconfiguration tool, which performed

transaction processing from user commands to

integrate and execute a library of reconfigurable

parts. FDAS was very different from other flight
dynamics applications, which allowed the FDD to

broaden its application experience with Ada. FDAS

interacted very heavily with VAX system services

and had a flat, loosely coupled architecture. Because

of this, the Ada packages could be developed in

parallel and the system integrated and tested in a

single build with ease.

Early in the project, the FDAS team grappled with

the issues of how to structure the reconfigurable

components so that they could be "plug compatible."

After clearly defining an application structure that

would meet the reconfiguration needs, the team

discovered that Ada provided all of the mechanisms

required to implement truly reconfigurable code.

This discovery led to the UARSTELS generic
architecture and formed the basis for the FDD's

future work in this area.

The Generalized Simulator (GENSIM)

(1987-1989)

The Generalized Simulator (GENSIM) project was a

research effort to define a generalized architecture

and construct generalized components that could be

configured easily to produce a combined attitude

dynamics and telemetry simulator. The team began

with the requirements phase; based on their

experience with previous simulators, they prepared

functional specifications for the generalized com-

ponents. Unfortunately, this project was funded at a

very low level of effort and produced very little
actual code. However, it furthered the FDD's under-

standing of rensable/reconfigurable flight dynamics

application software. Specific contributions in-
cluded:

• An improved set of low-level utilities

• Simplification of early systems' object states

• Generalized math specifications

The Combined Mission Planning and Attitude

Support System (COMPASS) (1989-1993)

and the Flight Dynamics Distributed System

(FDDS) (1993-present)

The Combined Mission Planning and Attitude

Support System (COMPASS) project's goal was to

build a new flight dynamics project support
environment and a repository for reusable application

code. This project defined a distributed architecture,

new user interface and executive support services,

and guidelines for specifying and implementing

reconfigurable flight dynamics application com-

ponents. This project was to proceed in parallel with
other traditional mission software development

efforts. When COMPASS had developed enough

support services and enough application code, it

would be used to construct simulators and major

ground support subsystems for mission support.

COMPASS was terminated in mid-1993 because it

was too expensive to produce the software as a

parallel effort without mission funding. However,
the COMPASS objectives and experience were not

SEL-95-001 16

lost, but rather absorbed into a new conceptual

framework called the Flight Dynamics Distributed

System (FDDS). The major goal of these systems
remains the same. The primary difference is how the

projects are organized and funded. The FDDS com-

prises two pans, the User Interface Executive (UIX)

and the Generalized Applications Support Software

(GSS), which are managed independently. Although
the UIX is supported with institutional funds, the

GSS, which produces reconfigurable components for

use on specific missions, is supported mostly by

mission funding. The GSS relies heavily on the

COMPASS specification and implementation con-

cepts and is implementing all reusable applications
components in Ada.

The FDDS/GSS has made significant advances in the

application of Ada and OO concepts, including:

• First use of object-oriented specifications, which

enables the development of classes (with the

attendant cost savings) and enhances the

understandability of Ada code.

• Improved use of abstract data types.

• Separation of math models (in classes) and

architecture considerations (in object managers).

For example, all error messages are sent via the

object manager, not classes. The implication is
that the classes can be reused in a different

architecture without modification, but would

meet the same math specification.

Enhancement of FDD utilities for completeness,
efficiency, and better abstraction.

Run-time configuration, object allocation, and

dependency setting.

2.4 Studies

Concurrent with the project experience described in

the preceding paragraphs, the SEL conducted several

studies to assess the risk and potential benefits of
Ada/OOD and to better understand Ada-related

issues as they arose through practical application of

the technology. In each case, specific goals were set
and the results recorded and considered when

planning subsequent projects and research into the
use of Ada.

2.4.1 GRODY/GROSS Parallel

Development Experiment
(1985-1989)

To introduce Ada into the FDD and assess its

applicability, the SEL conducted a controlled study in

which two dynamics simulators were developed to

meet the same requirements for the Gamma Ray

Observatory (GRO) mission. One system, the GRO
Dynamics Simulator in FORTRAN (GROSS) was

developed in FORTRAN using structured design

methods, as was typical in the FDD. A second

system, the GRO Dynamics Simulator in Ada

(GRODY), was developed in Ada using OOD
techniques. GROSS was to be used operationally and

would serve as a basis for comparing both product

and process measures. Both systems were built on
the VAX 780 computer.

The primary goals of this experiment were to

understand and characterize the Ada development

process and to establish and evaluate baseline

measurements for Ada development. GRODY

personnel were given a substantial amount of training

(see section 2.5.1 below) and were encouraged to

fully exercise the language; that is, to try out all new

language features that might be applicable in this

environment. The FDD goal of high reuse was also

emphasized and the team was encouraged to consider

future reusability when designing and coding the

system.

GROSS was funded, staffed, and managed as a

standard FDD project. It was schedule driven and

had to respond to all requirements changes.
GRODY, on the other hand, was funded as a research

effort. Because of this, management decisions often

favored full exploration of alternative solutions to

technical problems even if it resulted in schedule

slippage. This led to schedule delays, with GRODY
finishing 16 months after GROSS.

One of the major problems encountered by the
GRODY team was the lack of available methods to

transform a set of functional specifications (with an

implied structured design) into an object-oriented

design. The team spent a substantial amount of effort

during the design phase cleansing the requirements of

design implications and developing a methodology 5

for the project.

17 SEL-95-001

DespitetheSEL'sdesire to keep the functionality the

same in both systems, so that the relationships

between FORTRAN and Acla products and project

characteristics could be captured, the two systems

diverged somewhat. The GRODY team designed

and implemented a significantly more sophisticated

user interface than typically had been supplied for

dynamics simulators. Thus the code size and total

effort on the Ada project ended up much higher, but

perhaps would have been closer if GRODY had

implemented the same user interface as GROSS.

Conversely, GRODY did not have the full set of

dynamic models and onboard computer models that

were present in GROSS because the GRODY team

was not required to respond to the many requirements

changes that altered GROSS. Even with these

differences, the SEL was able to get an idea of the

relationship of FORTRAN to Ada parameters.

The primary results of this study are listed below:

Training for Ada is most effective when it

ensures that developers understand the software

engineering principles embodied in Ada, the

design methodology to be used, Ada syntax and

semantics, and any vendor-specific features of

the Ada environment, such as input/output

details or the library management system.

Managers and reviewers also need training.

Effort distribution among life-cycle phases and

activities was nearly the same for FORTRAN
and Ada.

Productivity measured as code development rate
was higher in Ada, although the Ada system

consumed more total effort because it was larger.

GRODY's extensive new technology develop-

ment and the associated learning curve drove the

total effort up, thus reducing productivity.

Reliability was lower with Ada but was con-

sidered primarily an effect of this project repre-

senting the first use of Ada in this environment.

Ada design characteristics differed significantly

from the FORTRAN/structured system. The

Ada design directly reflected newer software

engineering principles, such as information
hiding.

Code required more source lines with Ada, but

was more readable. Counting SLOC, the Ada

system was 2.5 times larger than the FORTRAN

system; counting statements, it was 1.5 times

larger (for similar, but not identical

functionality).

• Testing showed little difference between the two

languages. (This result was expected because

the FDD functional testing techniques reduce the

impact of the implementation language.)

• Team satisfaction was higher with Ada. At the

end of the project, the Ada team requested

assignment to Ada projects, and a number of the

FORTRAN developers also switched to Ada.

• The General Object-Oriented Design (GOOD)
methodology 5 was developed to meet the

specific needs of the flight dynamics environ-
ment.

2.4.2 Reuse Study (1990-1991)

In 1990, the SEL conducted a reuse study 6 to

determine reuse patterns and trends in flight

dynamics systems and to determine what attributes

make software components reusable. The SEL

analyzed the reuse of software source code

components among nine Ada projects developed in

the flight dynamics environment.

SEL analysts produced six different types of reuse

representations to highlight reuse among a large

number of components. They discovered that the

majority of Ada library units reused without change

was developed specifically for flight dynamics

applications rather than from the general utilities

libraries that had been purchased. This contradicted

the belief that purchasing a library of standard

computer science components would facilitate reuse.

By tracing the lineage of the highly reused

components, the study provided valuable insight into

the effects ofunnesting, Ada generics, and OOD.

The study concluded that

• OOD significantly improved the modularity for,

and level of, reuse.

• Ada generics significantly increased the level of
verbatim reuse.

• Highly reusable software had been produced for

telemetry simulators of three-axis-stablized

spacecraft.

The study recommended that projects designing and

building software "for reuse" should produce a

software reuser's guide. It also recommended that

SEL-95-001 18

domain-specificreuselibrariesbe createdand
maintained.

2.4.3 Portability Study (1989-1990)

One of the primary goals of Ada's designers was to

eliminate the proliferation of new languages and the

numerous dialects of existing languages by standard-

izing a defined syntax. The defined syntax was

expected to greatly reduce the level of effort required

to port an Ada system from one environment to

another. In 1989, the SEL conducted a portability

study 7 to better understand the issues of portability of

Ada systems. A small study team rehosted the

operational GOESIM system from the VAX 8810 to

an IBM 4341. A secondary goal of the study was to

evaluate the suitability of the compiler available on

the mainframe and tools for supporting Ada develop-
ment on the mainframe.

The rehost consumed 133 staff-days over a 10-month

period. Nearly 38% of the total effort was spent

compiling the code and researching and fixing

compilation errors. When the rehost was complete,
18% of the system had been modified and 6% had

been newly created. Once the system was compiled,

testing was very easy. Most of the tests passed

successfully, however a few failed due to compiler

anomalies. Throughout the effort, the immaturity of

the compiler on the target system caused problems.

The study concluded that Ada does enhance
portability. It took less effort to rehost the Ada

system than a comparable FORTRAN system (based

on empirical data), even with all of the compiler
problems encountered. The ported system performed

as expected and vendor-specific features caused

fewer problems than are typical with other languages.

The study team also felt that the user-defined types,

in particular, made the rehost effort easier.

However, the study also concluded that the Ada

compiler and development tools available on the IBM

mainframe were not yet mature enough to support

development of large-scale flight dynamics software

systems. Debugging was difficult and expensive due

to time-consuming recompilations and the lack of a
debugging tool.

2.4.4 Performance Study

(1990-1991)

With the introduction of Ada and OOD into the flight

dynamics environment, performance surfaced as an

issue. Programming in an unfamiliar language,

combined with requirements for more sophisticated

software systems, had highlighted the need to predict,

measure, and control the run-time performance of

flight dynamics systems. In 1989, the SEL initiated a

study to better understand the effect of new design

and implementation approaches on system

performance.

The study's objectives were to determine which
design and implementation alternatives lead to

accelerated run-times, to identify tradeoffs necessary

to achieve optimum performance, and to develop

guidelines to aid future Ada development efforts in

the FDD. To do this the study team performed

extensive measurement and analysis of the
performance of the internals of the GOADA system.

They also looked at different uses of the language in
small-scale benchmarks.

The study report s documented that incorrect design

decisions were the largest contributor to poor run-

time performance. It also showed that Ada com-

pilation systems being used at that time had bugs that

often contributed to poor performance. The study

recommended that reused design be continually

reevaluated against evolving user requirements to

ensure adequate performance, and that developers use
performance analysis tools to evaluate and assess

compilation systems during design.

The study concluded that Ada simulators in the FDD

can be designed and implemented to achieve
performance comparable to existing FORTRAN

simulators when performance is considered through-

out the process. The study team produced a set of

efficiency guidelines 9 for designing and coding Ada

systems on the VAX; they are summarized in
Table 4.

2.4.5 Ada Size Study (1991-1992)

By 1991, the SEL had collected measurement data

from enough Ada software development projects to

begin to develop an accurate cost estimation model
for flight dynamics Ada systems. For years, the SEL
had used software size as the basis for its cost and

schedule estimation models. Each project would
estimate the total number of new and reused lines of

code in the system (accurately reflecting the
functionality to be delivered), and then compute an

adjusted size, referred to as developed lines of code

(DLOC) (representing the amount of work to be

done), by scaling down the reused code size by a

19 SEL-95-001

Table 4. Ada Efficiency Guidelines

Requirements ° Match the data in the problem space (flight dynamics) to the appropriate data
Analysis structure in the solution space.

Design • Match the algorithm to both the data structure and the data.

Design procedures and functions for each package that map data of a general type to
the data (hidden) optimal type.

Whenever the size of the structure is truly static for a particular domain, design the
type as a constrained type.

Design generic components to allow users to choose between accuracy and
efficiency.

Performance-critical loops should not include any string-to-enumeration conversions.

Implementation • Looping structures should access arrays in row-major order.

• Use attributes wherever possible when unconstrained structures are necessary.

• Only use short-circuit control forms for performance reasons when the expression
contains function calls that have no side effects.

Maintenance • Modifications must address both the algorithmic and the data structure changes to
ensure that they both still match the problem.

reuse factor. Inconsistencies in the Ada project data

caused the SEL analysts to question whether size was

an accurate way of representing the functionality of

Ada systems. The SEL conducted the Ada Size

Study l° to answer this question and to develop a

better cost estimation model for Ada project

managers to use.

After characterizing the Ada development process in
the FDD, the SEL concluded that the adjusted size,

DLOC, was an accurate basis for estimating total

project effort for Ada. However, the reuse factor,

which represents the amount of work required to
reuse the code, should be higher for Ada systems

(0.3) than it is for FORTRAN (0.2). The study was
unable to determine the cause of this difference. The

study also produced a cost estimation model for Ada

systems. Although the model contained different

values for productivity, reuse factor, and phase

distribution, the same basic SEL estimation equation

worked for both FORTRAN and Ada systems. The
SEL Cost and Schedule Estimation Study Report, 11

published in 1993, conducted a more in-depth

analysis of cost and schedule trends in the FDD and

offers a more thorough treatment of this topic.

2.5 Training

When infusing any new technology, training plays an

important role. Training was expected to be critical

for infusing Ada in the FDD because of the

complexity of the Ada language and the new way of

thinking required for using object-oriented

techniques. Several methods were used to expose

developers to Ada technology and to prepare them to
use it in the FDD: commercial videotapes with

outside facilitators, project-team training given by

local "experts," and in-house developed college-style

courses. This Ada/OOD training is discussed in the

following sections, with comments on its effective-
ness in this environment.

2.5.1 Initial Training

The GRODY team received extensive training in Ada

before beginning the project. The training lasted

approximately 6 months and was equivalent to

2 months of full-time training for each individual.

The goal was to provide sufficient training in

software engineering principles, language syntax, and

OOD methodologies so that the team could make the

best possible use of Ada, i.e., so they would produce

a new, appropriate design for the Ada system as well

as code it in Ada. This training is described in detail
and evaluated in the GROD Y Training Evaluation. 12

The training was done in four parts: First, because

none of the team members had previous experience

with Ada, team members read Grady Booch's book

Software Engineering with Ada. Second, the team

SEL-95-001 20

viewedvideotapedtutorialsmadeby Alsys,Inc.,
duringaconcentrated40-hourperiodinaclassroom
settingwheretherewasopportunityfordiscussion
facilitatedbyauniversityprofessor.Followingthis,
GeorgeCherry,ofLanguageAutomationAssociates,
presenteda 24-hourseminaron the process
abstractionmethoddesignmethodology.The final

step, the longest and most productive part of the

training, was hands-on coding of a practice problem

using DEC's Ada compiler. The team spent 1336

staff hours developing an electronic message system

(EMS) (5700 SLOC). Although the EMS allowed

the team members to practice using Ada for standard

computer science operations, it did not provide an

opportunity to explore options for implementing the

types of scientific functions that are common in flight

dynamics software.

The GRODY team rated the discussions in the

training classes and team meetings and the EMS

practice problem to be the most helpful aspects of the

training. The chief drawback to the practice problem

was its size and simplicity. The team felt that a

smaller, more complex problem requiring the use of

packages and data abstraction would have been more
effective for their needs. The team also listed several

Ada features that were either difficult to grasp or

poorly covered during the training, including

input/output, tasking, generics, data types, and library
units and structures. The team recommended that in-

house experts prepare supplementary lectures to

augment the videotapes in these areas.

2.5.2 Project-Specific Training

The early Ada projects, including GOADA,

GOESIM. and FDAS, used project-specific training

where the team was trained as a group using a

combination of videotapes and locally prepared

lectures on topics such as library management, OOD,

data typing, and generics. Experienced FDD Ada

developers from the GRODY project served as the

trainers. This training was usually done on a part-

time basis during the requirements analysis phase of

the project. All currently assigned project personnel
as well as those scheduled to join the project during

design and implementation attended the training.

This training approach worked well during project

start-up, but had its drawbacks as the projects

progressed. When staffing changes became

necessary, typically during the implementation and

testing phases, no resource was available to train the

new people coming onto the project. This was a

significant disadvantage given that the entire pool of

available personnel (FDD FORTRAN developers)

had not yet been trained in Ada. The FDD needed a
way to gradually train its existing workforce outside

of the context of a specific project's immediate

staffing needs.

2.5.3 Institutional Training

In 1988, the SEL developed and deployed its first

Ada language course. One of the FDD Ada experts

adapted the Ada language course that he taught at a
local community college for the FDD environment.

This course introduced the student to the Ada syntax

and the software engineering principles and good

practices that Ada supports. The course consisted of
two 1.5 hour lectures each week for 10 weeks with a

weekly hands-on homework assignment to reinforce

the learning. Students were selected based on interest

and high likelihood of being assigned to an upcoming
Ada project. This course was generally well-

accepted and interest in taking the course was very

high, particularly in the contractor organization,

where Ada was perceived to be an essential skill for
the future.

In late 1989, the FDD brought in an outside trainer

from another part of the contractor organization to

provide just-in-time training for a group of new

developers and managers. These people needed to be

trained as replacements for a large contingent of Ada

developers who had left the organization to staff new

projects. The training for managers consisted of

2 days of lecture. Developer training consisted of

2 weeks of full-time hands-on training. Both courses
received favorable evaluations, but were considered

expensive.

When the SEL began developing a full-scale training

program for FDD personnel in 1989, Ada courses

were a featured product. Between 1991 and 1992,

the SEL deployed this series of three Ada training
courses:

• Introduction to Ada-Teaches the syntax and
semantics of Ada and familiarizes the student

with FDD Ada development tools; a series of

12 lectures over 12 weeks with weekly home-

work assignments; taught by a professional

teacher with limited software experience.

• Object-Oriented Development in Ada-Teaches

Ada developers and managers the object-oriented

approach to software development; covering

object-oriented requirements specification, and

21 SEL-95-001

theanalysis,design,implementation,andtesting
of Adasoftwaresystems;discussesFDDcase
studies;aseriesof 12lecturesover6weekswith
weeklyhomeworkassignments;taughtby a
GSFCAdaexpert.

• Project Implementation with Ada-Explains the

order and relationships of the techniques,

methods, tools, and products that are part of the

Ada software engineering process and practices

them on group projects; 6 sessions spaced out

over 2 months to provide time for practice

project development; taught by a contractor Ada

expert.

These SEL-sponsored Ada training courses had

mixed results. Course evaluation ratings ranged from

highly beneficial to awful. Analysis of the data
showed a high correlation between a student's course

evaluation and his/her predisposition toward the

language and the local FDD instructors. This was the

first documented manifestation of what appeared to

be a significant developer bias against Ada (see
section 4.1 for more on this topic). As a result of the

negative course evaluations, the SEL reevaluated its

approach to institutional language training.

In the future, the FDD will use independent sources

such as vendors and local colleges to teach language

syntax and semantics, and in-house developed

courses will be used to focus on application of the

language in the local environment using the local
development process and tools.

SEL-95-001 22

Section 3. Quantitative Analysis

The success with which the FDD met its Ada

experimentation goals of increased software reuse,

lower development effort, shorter cycle times, and

greater software reliability was evaluated by

analyzing data from contemporaneous Ada and
• 13

FORTRAN flight dynamics projects. Previous

papers have documented improvements achieved on
Ada projects over the 1985 FORTRAN baseline. 14

But, while the FDD was gradually maturing its use of
Ada for satellite simulators built on DEC VAX

minicomputers, the FORTRAN process used on the

larger, mainframe-based projects was also evolving

and improving.

This section compares the evolving Ada and
FORTRAN baselines between 1985 and 1994 in each

of the four experimentation goal areas (reuse, cost,

schedule, and reliability) and discusses the evolving

software process. It also presents a summary of the

results of quantitative analyses of data on language

feature use, process, and performance. Any improve-

ments seen on the Ada projects are assessed within

the context of the evolving FORTRAN baseline.
Since the preliminary SEL report on this study, 2 new

data have been added for completed projects in both

languages, and the size and effort data have been

normalized to support a more accurate comparison

among projects in the two languages.

3.1 Project Data

The FDD delivered operational software to support

10 spacecraft missions from 1985 to 1994. Of these,

eight missions had at least one simulator built in Ada

on the VAX and an AGSS developed in FORTRAN

on the IBM mainframe computer. Data from all FDD

projects that produced operational software for these

eight missions were examined. In particular, the

series of corresponding telemetry simulators and

AGSSs from the same missions were analyzed to
assess the relative impact of. using Ada and
FORTRAN.

For each language, projects were grouped according
to date (1985-1989 and 1990-1994), producing two

distinct analysis periods. This division into "early"

and "recent" projects occurs at a natural break in the

data that corresponds with a significant increase in

levels of reuse achieved and with changes in the local

development process. Results were also compared

with the existing SEL baseline from 1985. The com-

plete project data used in this analysis, as well as the

1985 SEL baseline measures appear in Appendix A.

Data for the MTASS/MSASS project are also

included in Appendix A. This project, established in
1990, maintains and enhances FORTRAN reusable

components in two controlled libraries to support

missions in the two spacecraft domains: multi-

mission three-axis-stabilized spacecraft (MTASS)

and multimission spin-axis stabilized spacecraft

(MSASS). (MTASS/MSASS is described in detail in

the discussion of reuse approaches in section 3.2.1 .)

3.1.1 Size Measures

Software size is used in these analyses as a

normalizing factor when comparing productivity,

reuse, error density, and process effects. The tradi-
tional measure of software size in the FDD has been

source lines of code (SLOC), which counts every

carriage return in the source files, including blank
lines and comments. For this study, however, state-

ment counts were chosen (i.e., the number of logical

statements and declarations) because this count is not

sensitive to formatting and therefore provides a more

uniform indicator across the two languages both of
delivered functionality and of development effort

expended, t5 The average number of physical lines

per statement varied over the period studied, because

of the evolution of programming style and comment-

ing conventions. Since 1985, the average number of

lines per FORTRAN statement grew from 2.5 to 5

due to increased commenting, whereas the maturing

Ada coding style caused the average number of lines

per Ada statement to shrink from 6 to about 3.

The oldest FORTRAN code included in the study

contained prologs that averaged from one-third to

one-half of the total size of each subroutine, and

consisted of about 20% to 30% inline comments• By

the midpoint of the study period (code written around

1989), both the prolog and the inline commentary had

grown so that the average number of lines per

statement had increased to about 3.5. This density is

representative of most of the reusable soft-ware in the

FORTRAN subsystem libraries (MTASS and

MSASS). Recent FORTRAN written using

Cieanroom methods has even larger prologs as well

23 SEL-95-001

as inline commentary equal to (or greater than) the

statement size, and it exhibits an overall expansion

ratio of about 5 lines per statement. Recent non-

Cleanroom FORTRAN exhibits a density of about

4.5 lines per statement.

On the other hand, the earliest Ada projects had

extensive commentary and vertical formatting which

inflated their size to an average of 6 lines per

statement. A more succinct style of about 4 lines per

statement had evolved by about the midpoint of the

study period, when most of the reusable generic

components were developed (for the UARSTELS
project). Most recently, there has been a further

increase in density, to about 2.5 lines per statement.
The main reason for this recent increase in Ada code

density was the decision to move much of the inline

descriptive documentation to external references.

This omission of most of the inline commentary in

any new Ada code was intended to encourage reusers
of the software to concentrate on understanding the

semantics of the interfaces rather than studying the

implementation details. The change was also

intended to prevent the insertion of project-specific

commentary into reusable software. Except for a

standard prolog a style similar to the documentation

used for package Text_IO in the Ada Language

Reference Manual 16was chosen, where only brief

clarification is included as inline commentary and

any pertinent semantic details are contained in a

companion textual reference.

3.1.2 Language Feature Usage

A 1991 report on Ada language feature usage at the

FDD determined that Ada developers were

attempting to use the full capability of the language. 13

The reported changes in language-feature use over

time indicate that the use of Ada evolved quickly and

then stabilized. Figure 4 shows four views of the

evolving language usage. The figure indicates that

the use of generics and strong typing increased,

whereas the use of tasking decreased along with the

average package size, indicators of more efficient use

of Ada features. This maturation appears to have

stabilized in recent years, suggesting that a standard

approach has been "defmed" that is appropriate for

this environment and application domain.

80*/.

_, 6O%

40%

ID

2.5

2

0.5

Generics

85/86 87/88 88/89

Package Size

90/93

85/86 87/88 88/89 90/93

.O6

t. .04

02

0.0

10

8

._e e

2

0

Strong Type

8stee 87/88 88/89 9o/93

Tasking

Figure 4. Maturing Use of Ada at the FDD

SEL-95-001 24

3.2 Reuse

During the time that Ada has been used in the FDD,
there has been a considerable increase in the reuse of

previously developed software on new projects. This

has been achieved on all FDD projects that have

applied object-oriented methods, regardless of

language. Figure 5 and Figure 6 show, for Ada and

FORTRAN projects, respectively, the percentage of

each project that was reused without change

(verbatim) from previous projects. The minimum

unit of reuse is a single compilation unit; no credit is

given if only a portion of a compilation unit is reused.

The percentages are computed by dividing the total

size of all compilation units reused verbatim by the

total delivered size of the project.

Figure 5 shows a large increase in verbatim reuse in

1989 when a set of Ada generics purposely designed

for reuse during the UARSTELS project was

demonstrated to be sufficient to construct nearly 90%

of EUVETELS, the subsequent project in the

telemetry simulator domain. This level was main-

tained for telemetry simulators until the POWITS

project (dip in the amount of reuse shown in

Figure 5), when a change in the domain required that

the Ada generics be modified and additional new

code be developed. Specifically, the original domain
where high reuse was achieved was simulation

software for three-axis-stabilized spacecraft. When a

spin-axis-stabilized spacecraft was simulated for the

first time, a substantial drop occurred in the verbatim

reusability of the library generics. This
incompatibility was rectified with the creation of

additional generics so that now the entire set can

accommodate either a three-axis- or a spin-axis-

stabilized spacecraft. The slight drop in the most

recent examples of reuse to around 70%, as compared
with the earlier successes that were closer to 90%,

was due to performance tuning on the latest projects.
Performance issues are discussed in section 3.7.

Figure 6 shows the corresponding picture of verbatim

reuse on the FORTRAN projects during the same

period. At its peak, the amount of verbatim reuse

achieved was nearly as great as with the reusable Ada

generics, and the first successes occurred at nearly
the same time as the first highly successful Ada

reuse. (The first high-reuse FORTRAN project,

EUVEAGSS, was the corresponding ground support

system for the same satellite mission as the first high-

reuse Ada simulator, EUVETELS.) Again, the

change in domain to spin-stabilized spacecraft caused

a drop back to the low levels of reuse observed on the

90%

80%

70%
¢)

60%
.,,,_

50%

_. 40%

30%

10%

0%

17%
12%

0% 4%
I_I I

O < r_
© 0 m
CD CD

<

88%

: : : ::

:: : :::

:i 21%

:: ::, _: _::_::,:::

:::: : :::,::

i

> >

Project Name

85%

i
:::: : :

:::: :: :

: i

::: : ::

i

:/
:: ::::::::,:: ::

: : :: :::: :=

b-,
X
m

<
r_

39%

::: :: :

!iili iili
::: ::,:

r_

0

75%

i:i;i'!i,!i:ii:i: 64%
_:i L _: i: i, _:

- , 0"/ i''i_'_',_,'!_'iiii'
:: : :-,;:: [!i_i!,_iiiiiii
Y:/Ui__iv:::! _: _i iiiii i; i! !i_

iiii}i'i:!:ii:ii!';?i!_,!ii'i_,i_i',i_iiii_ii'ii_iiiiI

ii!iiiiiiiii!iiiiiiiiiiiii iiiiiiii ii ;::i;
iiiiiiiiiiii!_iiiii_!iii!iil;il;iiiiii;:i,i17,,:i::ii;,ii

: ::/ :

: rl : :::

Figure 5. Verbatim Reuse Percentages for Ada Projects

25 SEL-95-001

90%

80%

70%

60%

E
•

30%

20%

10%

0%

O

14%

6% 7%
I INI

5% 4% 4%

I I_I_I

75%

ii_iii#ii{il

i i_,iii::_ili

< 0 0 < < _ <
0 _ _ r_ _ r_ ,._

Project Name

81%

iiii!ii
I

N
_m

r_

5%

I I

75%

;ii!ii:i}#:ii_i_i_il

:iiii;ili_iiii_)i_i!_i
iii_!ii_iljjii!-_ii

;;#i;i!;_ii_i!)i;_

iiii!!i#i!iii!ii
iiiiiii#_i_ii_i!fi

i2ii_j,%i?i
i'iii_irii?[_:iji
::::::::::::::::::::::

:::::::::::::::::::::

ii'iii!}iiii_i;#i_#!

i:#_i_i:!i:i_';ifi

ii:iiii]_ilili_iii!iiiil

75%

:.!_i:-:iii_ii_iiiiiii_i

::::::::::::::::::::::::::
i!iii{i)i:;Z:i:ii_?il

_iiiii_iii!iii!_iii!ii_

I

-
0 <

Figure 6. Verbatim Reuse Percentages for FORTRAN Projects

earlier projects in the late 1980s. In the FORTRAN

case, however, the reusable components from the

three-axis domain were even less suited to the spin-
stabilized domain than had been the case with the

Ada components. This is shown by the even greater
drop in reuse on the FORTRAN ISTP system as

compared with the corresponding Ada simulator,
POWlTS.

Before drawing conclusions from these data, it is

important to understand the different reuse ap-

proaches that have been used on FORTRAN and Ada

projects and to consider their effect on quantitative

data. The independent assessment team thoroughly

investigated the different approaches to reuse used in

the two languages to determine their influence on the

quantitative results. The detailed results of this

research and analysis are recorded in Appendix B.
The key findings of this study are discussed below.

3.2.1 Different Reuse Methods

The FDD used two different methods to manage

reuse on its Ada and FORTRAN projects. This
decision had more to do with the amount and

expected lifetime of the software being reused, than it

did with language. The AGSSs are very large and are

used for many years to support active spacecraft
missions; this makes strict, controlled management of

the reusable code common to all AGSSs very

important. Thus, the FDD chose to create a central

library containing the reusable FORTRAN AGSS

subsystems and to allocate a separate team to both
maintain it for all active missions and modify it to

support all new projects. Because of this, individual

AGSS project teams are only responsible for

developing new mission-specific subsystems, which

they execute in concert with selected standard

reusable subsystems to support a mission.

SEL-95-001 26

Conversely,the Ada simulators are relatively small

with short operational lifetimes (on the order of

months-to support prelaunch testing); this makes

long-term configuration management a less important

concern. Thus, Ada projects employing reusable

components maintain and modify their own copy of
the reusable simulator software for each mission.

Table 5 summarizes the basic differences between the

reuse methods used on the FORTRAN and Ada

projects. It is important to consider these differences

when analyzing the quantitative data in order to

differentiate, as much as is possible, between the

effects of the reuse methods and the effects of using

different languages.

3.2.2 Adjusting FORTRAN Measures

to Compensate for Different
Reuse Methods

In Figure 5 and Figure 6, both languages appear to

have achieved equivalent reuse success. However,

because the SEL collects reuse data only from the

reusing project's perspective, this picture is
somewhat misleading. The FORTRAN projects

report all the subsystems that are reused from the

MTASS/MSASS libraries as verbatim reuse, regard-

less of whether or not any units inside them need to

be changed or new units need to be added by the

separate maintenance team. On the other hand, the

Ada projects, having responsibility for all of the

software, provide a more accurate representation of

verbatim reuse by reporting the reuse status of all

individual units in the system. Likewise, the effort

data of the Ada projects reflects the entire cost of

reusing and modifying the generalized software as

well as the effort required to develop new mission-

specific components. But the FORTRAN project

data reflects only the effort required to develop the

mission-specific subsystems; the effort expended by

the separate software maintenance team to under-

stand, modify, and test the generalized reusable

subsystems to meet project requirements is reported

separately. Thus, the following adjustments must be

made when analyzing the data.

Adjusting for FORTRAN Library Maintenance
Costs

Because the high-reuse FORTRAN projects could

not have delivered their systems without the services

of the MTASS/MSASS library maintenance team, it

is necessary to include these hours when computing

the overall costs and productivities of the recent

AGSS projects. This adjustment provides a fairly

accurate basis for comparing the total development

Table 5. Ada vs. FORTRAN Reuse Methods

Factor FORTRAN Systems Ada Systems

Reusable source Single library serves all development Each development project and operational
code management projects and operational missions, mission has its own copy of the reusable
approach source,

Generalization Package data and functionality together. Use Ada generic packages to implement
approach for Use case statements to handle multiple parameterized logic that is instantiated for
implementing mission needs, specific mission at compile time via
reusable software parameters,

Reuse approach New mission-specific subsystems New and modified units are linked with
communicate with reused executables verbatim reused units to produce project
via data sets at run-time, executable,

Personnel

Change philosophy

Separate, specialized team maintains
(modifies and tests) reusable code to fit
new mission requirements.

Project team develops new mission-
specific subsystems.

New mission requirements that affect
reusable subsystems are handled by
appending mission-specific 'case' logic to
generalized subsystems; existing code is
not touched if possible.

Rigorous regression testing is done.

Project team modifies reusable code when
necessary and develops new mission-
specific components.

Mission-specific requirements are handled
through paremeterized generics.

When modifications are necessary, the
generic components are made more
generalized to handle the new requirements
also.

27 SEL-95-001

costbetweenlanguagesandbetweentheearlierand
latertimeperiods.

Ontheotherhand,whenusingthedatatomodelthe
costof new,modified,or reuse-baseddevelopment
fromtheprojectpointof view,onlythereported
mission-specificeffortshouldbeused.In thiscase,
noadjustmentsto theFORTRANeffortdataare
necessary.

Adjusting verbatim reuse levels for

FORTRAN projects

To clarify the relative cost of reusing externally
maintained software vs. internally (project) main-

tained software, this analysis separates verbatim

reuse into two categories:

• Black-box reuse-Reusable software to which the

project team simply allocates requirements.
When necessary, a separate team enhances and

modifies the generalized subsystems to meet

those requirements; the reusable software is then

integrated with new mission-specific software

and tested. In other words, the project team

needs only to understand what the reusable

components do, not how they do it.

• White-box reuse-Software that is reused without

modification, but which the project team must
read and understand, as well as test with the

mission-specific software under development. In

other words, the project needs to both understand

what it does and how it does it well enough to
decide if it can or should be reused.

Separating the verbatim reuse in this way allows a
better approximation of the overhead involved in

learning, understanding, integrating, and testing

software that can be reused without change. It also

provides a more equivalent basis for comparing the

cost of verbatim reuse across the languages.

3.2.3 Software Size Differences Due

to Generalization Approach

and Language

The verbatim reuse percentages reported in the

project data give the impression that the two

languages are equally able to express generalized

functionality. However, further investigation

revealed significant differences in the structure of the

reusable code and the software change philosophy

used depending on the language used.

The Ada reusable architecture makes extensive use of

Ada generics to provide generalized packages and

procedures, which are instantiated to create mission-

specific code during compilation. Because some of

the generics are used repeatedly within the reusable

software, the net effect was a 25% decrease (for a

compression factor of .75) in the size of the code

required to implement equivalent functionality when

compared with earlier single-purpose mission-
specific Ada code.* The FORTRAN reusable sub-

systems similarly used object-oriented techniques to

encapsulate data and functionality into reusable

components, however, the generalization was

provided using parameterized case statements to

determine (at run-time) which code to execute for a

particular mission. Specific code was provided for

each individual case. The FORTRAN type of

generalization caused the reusable code size to grow.

For example, an analysis of the MTASS generalized

subsystems showed that they increased in size

between 10% and 40% when compared with

subsystems expressing similar functionality in earlier

mission-specific systems; this indicates an expansion

average of about 25% (or a factor of 1.25).

The maintenance approach for the reusable sottware,

which is driven both by language and generalization
approach, also affects software size. FORTRAN

libraries must be continually augmented to handle

new missions in their respective domains. It is the

practice of the FORTRAN maintainers to augment

the subsystems as necessary by adding code for any

new requirements rather than by generalizing or
modifying the existing code. This approach is more

straightforward given the limitations of FORTRAN

and it also avoids the risk of introducing errors for

existing clients. However, this also causes the

FORTRAN libraries to grow over time. For

example, the MTASS subsystems used in both the

EUVEAGSS and TOMSAGSS have grown by nearly

10% while under maintenance. Conversely, the Ada

generics form a set of smaller components that

requires little or no further modification to handle

*This figure is computed by first assuming that it took 15K
statements of reusable UARSTELS code to deliver 110%

of the GOESIM functionality, which required 18K
statements. Therefore, it is expected that 110% of the
GOESIM function would require 18K * !.1 or 19.8K
statements, compressing Ada-to-FORTRAN reuse to
15:19.8K or nearly .75:1. This contradicts the longstanding
notion in the FDD that software size increases
proportionally to functionality.

SEL-95-001 28

missionsin eitherdomain.TheAdadevelopers
directlyhandlethe generics needed for each project

and further generalize them only when necessary

(such as by deleting unnecessary dependencies

between components). Thus the size of the reusable

Ada software remains roughly constant.

These size differences have the following implica-
tions:

• The generalized FORTRAN systems are on the

average 25% larger than previous systems that

provide similar functionality. This was

considered when productivity measures were

examined for this analysis. Combining the

FORTRAN expansion ratio of 1.25:1 and the

Ada compression factor of .75:1 results in a net
difference of 1.5:1 between FORTRAN and Ada

generalized software size.

• The large, and continually growing, size of the

FORTRAN reusable library increases the cost of

maintaining it. While 3.5K hours were required

to enhance MTASS for SAMPEX (in 1991-

1992), it cost between 5K and 6.5K hours per

mission to enhance MTASS/MSASS for use by

four mission systems in late 1992 through 1994.

3.2.4 Impact of Different Reusable

Software Management

Approaches

The maintenance and configuration control risks

associated with maintaining separate copies of the

reusable components in each client project's library

never manifested on the Ada projects. It is

impossible to determine from the data available

whether the Ada language was influential in

minimizing these risks, or whether it was due to the

small size and short lifetimes of the Ada systems.

The use of single, centralized copies of the library

subsystems for the FORTRAN projects and not for

Ada projects introduced a mismatch that complicates
direct comparison of the effort measurements for the

two languages. However, the resulting data do

provide some insight into the effort required to learn

and modify the reusable software. Because the

individual application programmers for each
FORTRAN project do not have to concern them-

selves with the internals of the reusable subsystems,

none of their effort is spent learning the reusable

software. The Ada projects, on the other hand, have

the burden of directly handling the reusable software,

which means that Ada developers, with neither a

library support team nor comprehensive documenta-

tion (as yet), must study the internals of the reusable

components to understand their proper use and to

determine if any enhancements are needed. The

additional cost of the learning curve required to reuse

software on the Ada projects can be seen when reuse
is broken out into the "white-box" and "black-bo_'

categories defined in the discussion of different reuse
methods (in section3.2.2).

3.2.5 Computing the Productivity
of Reuse

Conventionally in this environment, reuse is
classified as either verbatim reuse or reuse with

modification. Using the technique developed by
Bailey, 17 individual productivities of the different

categories or modes of code development/reuse in the

FDD were estimated by deriving a set of

simultaneous equations and then solving for the

unknown productivities (see Appendix B). The effort

for each project was expressed as the sum of the

efforts to develop the various amounts of code in

each category (new, modified, verbatim).

The best overall solutions for the productivities for
new, reused with modification, and verbatim reuse
for both Ada and FORTRAN code are shown in

Table 6.

Table 6. FORTRAN and Ada Development
Productivities*

Category of Code Reuse FORTRAN

New Code 1.2

Reuse with Modification 2.4

Verbatim Reuse 5.5

Ada

1.1

1.2

5.0

*Statementsper hour

In Table 6, the productivities for both languages are
nearly identical except for the "reuse with

modification" category, where the FORTRAN

productivity is double that of Ada. This could

indicate that FORTRAN units are easier to modify

than Ada units. However, this analysis concludes

that the difference actually reflects the learning curve

required for reusing generic Ada code. When a

project team needs to modify a part of the reusable
software, additional effort is required first to

understand the code and its applicability, and then to

generalize it further to ensure future reusability.

29 SEL-95-001

Separationof the verbatim reuse category into black-
box and white-box reuse for the later FORTRAN

AGSS projects where MTASS and MSASS were

used yielded a more stable and well-behaved set of

productivity estimates for the development modes.

As one might expect, the productivity for the new

black-box verbatim reuse category was very high.

Depending on the group of projects included in the

solution, some of the analyses showed it to be

essentially "infinite" (meaning that black-box

statements can be "developed" for free, so the size of

the reused components has little or no effect on the

reusing project's cost). This means that produc-

tivityvalues for the other categories would be
unaffected even if the black-box verbatim statements

were eliminated from the project totals.

The productivities for the development/reuse

categories with the addition of black-box verbatim
reuse are shown in Table 7. There is no software in

the black-box verbatim reuse category on the Ada
projects.

Table 7. FORTRAN and Ada Development

Productivities* Including Black-Box Reuse

Category of Code Reuse

New Code

Reuse with Modification

White-Box Verbatim Reuse

Black-Box Verbatim Reuse

FORTRAN Ada

1.2 1.1

2.4 1.2

4.0 5.0

21.0 N/A

*Statements per hour

Reuse-library-supplied statements were included

because the current reporting style is to include them

in project totals. However, in the future it might

make more sense to exclude them from project

development estimates and reported sizes, analogous

to the way the size of a math library is ignored. It

would still be important to budget for the library

maintenance task, however, and to understand that

library maintenance remains an additional cost of

delivering FORTRAN AGSS projects. Eliminating

the reporting of the FORTRAN library software

which masquerades as zero-cost verbatim reuse

would also bring the Ada and FORTRAN reuse

factors more in line with one another (see discussion

of cost reduction in section 3.4).

3.3 Process Evolution

An evolving development process had as much to do

with the improvements in productivity as the

increases in software reuse. Without the support of

an appropriate process, reuse techniques alone would

not have led to the improvements observed. The

software process is characterized by examining the
distribution of effort across the various software

development activities performed. Life-cycle activity

categories include design, code, test, and "other"

(e.g., management, meetings, system documentation).
Figure 7 shows the average activity distributions for

all Ada and FORTRAN projects during the study

period. The figure shows the average percentage of

staff-hours per project consumed by each activity for

software projects at the FDD.

Ada and FORTRAN Activity Distribution

27% 27%

._ 26%

25%
•_ 25%

_24%

23% 23%

23%,

22%

21% .

Design Code Test Other*

"e.g,meetings,management,documentation

26% 26% 26%

DA_[] FORTRAN

Figure 7. Activity Distribution: All Ada vs. all FORTRAN Projects

SEL-95-001 30

Projecthistoryreportsdocumentthefactthatthe
softwareprocesswaschangingthroughout the Ada

study period, as seen in Figure 5 and Figure 6. These

figures clearly show the points when dramatic

improvements in reuse were achieved in both the Ada

and the FORTRAN projects. The first Ada simulator

and the first FORTRAN ground system to exhibit

high reuse were both written to support the EUVE
mission. Because of the nature of satellite mission

support, the simulator is typically completed first so

that it can be used to test the ground system. (In the

case of EUVE, the Ada simulator was completed

about 4 months ahead of the corresponding

FORTRAN ground system.) Because these first

successes with reuse almost coincided, and because

they are associated with measurable changes in the

development approach, the inclusion of Ada and

FORTRAN projects in the "early" or "recent" set

depends on whether they were completed before or
after the EUVE experience. This formed a conven-

tional reuse set and a high-reuse set of projects

in each language.

The differing shapes of the early and recent activity

distributions shown in Figure 8 illustrate that the

more recent, high-reuse Ada projects have been, in

fact, conducted using a different process than the

early projects. The light bars for each activity show

the averages for the first five Ada simulator projects,

and the dark bars show the average effort per activity

for the five recent Ada simulators that achieved

higher levels of reuse. In both cases, the percentages

are based on the average total effort for projects in

the early set to more dramatically demonstrate the

savings realized on recent projects relative to those

earlier projects.

Because savings were apparent in each of the

activities, it was concluded that the savings exhibited

for the recent project set is not due to code reuse

alone but also to the process change that came about

as a byproduct of that reuse. Some of the process

changes include requirements specifications

expressed in terms of specific earlier system

functionality, compression of PDR and CDR into one
review, and reuse of baseline documentation.

Figure 9 shows the average effort by activity for the

FORTRAN projects that were completed during the

same period. Again, the projects are divided into an

earlier group of lower reuse projects and a more

recent group of higher reuse projects, and the

percentages are all based on the average early project
effort. As with Ada, a reduction in effort is shown

for each activity when comparing low reuse with

high reuse, although the net reduction is less in
FORTRAN. Unlike the Ada results, however, most

of the FORTRAN reduction occurs in the coding

activity instead of being spread more evenly across

the life cycle.

35%

30%

1=

25%

"5 20%

"" 15%

o 10%

_ 5%

0%

Ada Projects: Early and Recent Activity Distributions

21%

18%

iliilii!iiiiiiii!iiiiiii:_i_iiiiiiiiiii

_!_i_iiii_iii_i_iiiiii_iiiiiiiii:ii!

i!_i!ili!_i_'iiii!iiiiiiiiiii!iiiii!

28% 28% 27%

24%

: :: ::::

:::: :::: :
:::::::::::::::::::::::::::

::::: : :::

: : : ::::,::

i

20%

iii!i!ii_iiiiiiiiiiiiiiiilili,i!_

!_iiii!ii:.i_iii}iiii_iiiii!!
iiiiiliiiiii!iiiiiiiiili!!iiiii
:::::::::::::::::::::::::::

ii_ii_i!_riEiiiiii!iiii!rii!_!i

: ::: ::::::::::::::

ii_iiiiiii!ii!iiii_iiiiiiili_ii

ii i i I

Code

33%

i,iiiiiiii iiiiiiiiiili i!!iii i! ii,li
,i,,,!:i,ii:i!,!,?,/,,,ii,i,,,i,

'iiiilLL,i!I_,!,:'i_ii,_i,i

i:::i i::i;2 il_i: i

_iiiii_i!ii_!iiii_ii_iiiiiiiiii!_!iiil
!i:i%i_:::il i
_:iiiiiiiii_i_iii:i:iiii_!iiii:

I:)LII::II:!!i iL!_

i!!i!,iii_i_i_ii!_iiiii_iii'i_iiii'ii_i

:::: ::: ::::::: : : :
::: ::::: :

Design Test Other*

*e.g., meetings, management, documentation

[] Early

[] Recent

Figure 8. Activity Distribution for Ada Projects

31 SEL-95-001

FORTRAN Projects: Early and Recent Activity Distributions

35%

30%

25%

'5
_D

"E' 20%
d_

15%

O

10%

5%

0%

21%

33%

: ::::::::::::::::::::::
ii_iiii_iiiit_i_ii_iii}iii!

ii;iiiiig?_

28%

Design Code

17%

26% 26%
25%
--_ -- 23%

iiiiii_iii_i!ii_i!iiiii_iiiiil

iiiii!iii:£i

Test Other*

*e.g, meetings, management, documentation

[] Early

[] Recent

Figure 9. Activity Distribution for FORTRAN Projects

The shape of the activity distribution of the early

projects in the FORTRAN set (light bars in Figure 9)

is virtually identical to the activity distribution of the

early projects in the Ada set (light bars in Figure 8).
On the other hand, the distributions for the recent

high-reuse projects differ between the languages.

This suggests that the Ada and FORTRAN processes

have each evolved in a different way even though

they share a common ancestry. The main lessons

from this illustration are that the software process

matured and improved during the Ada exploration

period and that this evolution affected both the Ada

work and the FORTRAN work, although in different

ways. Discussions later in this section will show that

these process changes are also associated with a
reduction in overall project cost and shortening of
schedules.

The process changes associated with higher reuse in

both languages were originally suggested by the

developers themselves. After their initial experiences
with Ada reuse and OOD, two of the chief software

engineers documented their approach to capture this

experience and to enable it to be more widely used by
the organization. 5 This document, released in 1986

after only about 1 year of Ada experience, formed the

underpinnings for the ultimately successful reuse

techniques that took almost another 4 years to come

into practice with the UARS and EUVE missions.

In 1990, when the use of generalized software was

first shown to be possible in both Ada and

FORTRAN, it became clear to the developers that the

cost advantages of large-scale reuse could not be
realized unless the software development process

were pared down correspondingly. There were

further latencies in institutionalizing these changes,

however. As was noted, the EUVE projects in both

Ada and FORTRAN reused large amounts of the

prior UARS projects. However, a risk-reducing

management decision was made to allow sufficient
time and budget for the EUVE projects to be

completed in a conventional fashion. It was not until

the following pair of projects, for the SAMPEX

mission, that the schedule and the process were

actually redefined and streamlined for high reuse.

Formal documentation of this new process took
another 2 years. 3 The overall latency from the first

attempts to incorporate reuse technology into the

development process, to the adoption and formal

documentation of a reuse-based process was about

8 years: 5 years to develop a reuse technology

(1985-1990); 1 year to demonstrate its effectiveness;

and 2 years to practice it, refine it, and document it.

SEL-95-001 32

3.4 Cost Reduction

The average cost to deliver a statement in each

language was calculated, again adopting the

distinction between conventional-reuse projects and
high-reuse projects-respectively, those before and

after the EUVETELS project. The left-hand side of

Figure 10 shows the average cost in hours to deliver a

statement of Ada, both for the early project set and

the recent project set. The figure shows that the net

productivity of delivering Ada software has doubled

since high reuse has been achieved.

The right-hand side of the figure shows the average
cost in hours to deliver a statement of FORTRAN

before and after the high-reuse process. Again, there

is an improvement, though not as great a reduction as

in the Ada projects, particularly when the effort of

the library maintenance task is computed in the total.

As recommended in section 3.2.3, the effort spent by

the MTASS/MSASS library maintenance team is

included in the overall cost to deliver high-reuse

FORTRAN systems. The lighter of the two "recent

FORTRAN" bars indicates the average cost per

statement on the projects without the MTASS/

MSASS contribution. The total cost, including costs

for the maintenance of the independent FORTRAN

reuse libraries (shown in the darker of the two bars),

were computed using the total number of hours spent

on all projects in each set plus, in the case of the

recent FORTRAN projects, the library maintenance

hours spent doing enhancements during the time

period when each respective project was under

development. The adjusted effort was divided by the

total number of statements delivered on all applica-

tion projects in each set to estimate the average cost.

The change in the cost shown to deliver the most

recent FORTRAN projects reveals that, due to the

overhead of maintaining the reuse libraries, there has

been less net improvement in the efficiency of

FORTRAN development since adopting the high-

reuse process. This suggests that, although

FORTRAN is probably more cost effective for

building short-lived, single-use software, Ada is

preferable for software that is likely to have a longer

life through future reuse.

The effect on code size when expressing general

software in each language also must be taken into

consideration when using statement counts to

E

>

O

0.90

0.80

0.70

0.60

0.50

0.4O

0.30

0.20

0.I0 -

0.00

.0.86

Early
Ada

52% reduction

I I

Recent

Ada

0.65

Early
FORTRAN

26% reduction

35% reductior/

0.48

_1 0.42
: ::::

ii

: :

Recent
FORTRAN

[] Hours per Delivered
Statement

[] Including Reuse

Library Task Hours

Figure 10. Average Effort to Deliver a Statement

33 SEL-95-001

compareproductivity.Asdiscussedinsection3.2.3,
thegeneralizedportionsoftheFORTRANcodewere
largerthanthecomparablesingle-purposesolutions.
Conversely,theAdaprojectsthatincorporatedthe
reusablegenericsweresomewhatsmallerthanthe
earliersimilarprojects.The net difference between

the two languages, which may be as much as 1.8 to 1,

means that the effective cost for Ada (based on

functionality delivered) is actually lower than that

shown above, whereas the effective cost for

FORTRAN is actually higher. Adjusting for the Ada

size compression factor of .75:1 and the

corresponding size expansion factor of 1.25:1 for the

generalized parts of the FORTRAN systems (see

section 3.2.3) results in a more accurate picture of the

change in cost due to high reuse in each language.

Figure 11 shows the cost of delivering comparable

functionality between the early project set and the

recent project set for both Ada and FORTRAN. This

indicates that, in terms of functionality, FORTRAN

development costs have decreased only slightly,

whereas Ada costs have come down by one half due

to high reuse.

The current model used in the FDD for estimating the

cost of reuse was developed based on empirical data

available in 1993.11 It specifies that development by
reuse in FORTRAN costs about 20% of the cost of

new code development, but that reuse in Ada costs

about 30% of the cost of new code. These figures are

the "reuse factors" for each language, which can be

multiplied by the new code development costs to

estimate the cost of delivering reused software. This

model suggests that it costs 50% more to reuse Ada

over FORTRAN from the reusing project's point of
view.

The findings in this report suggest that the apparent

advantage that FORTRAN reuse has over Ada reuse

is created by the highly productive black-box

verbatim reuse used on FORTRAN projects, which is

not available to the Ada projects. The cost of the

separate task which offloads the actual expense of the

black-box code (i.e., the effort to understand and

modify the FORTRAN utility subsystems), is not
included in these reuse cost estimates because it is

funded separately and available to all FORTRAN

AGSS projects. However, because the separately
funded cost of maintaining the reusable libraries

raises the true cost of the FORTRAN projects in a

way that is not reflected by these models, the reuse

cost factors are not directly comparable.

0.90

0.80

= 0.70

_ .60

0.50

-_ 0.40

_ 0.3o

0.20

O

0.10

0.00

Hours per Statement Adjusted by Function Delivered

0.86

0.65

Early
Ada

0.33

I I I I

Recent Ada Early
FORTRAN

Ada vs. FORTRAN, Early (low muse) vs. Recent (high reuse) Projects

0.59

I

Recent

FORTRAN

Figure 11. Average Effort to Deliver Similar Functionality

SEL-95-001 34

A betterwaytolookattherelativecostsofreusein
the two languagesis to considerthe ratiosof
productivitiesbetweennewandreusedcodeineach
language,aswasdoneinsection3.2.5.Theseratios
appearto benearlyidentical(exceptfor reusewith
modification,where,in theFORTRANcase,a
separateteamperformsthe modifications,and
productivityratesdivergeaccordingly),which
suggeststhatsimilarreuseprocessesresultin similar
productivitylevels,regardlessoflanguage.Infact,it
evenappearsthattheper-lineproductivitiesare
comparablebetweenthelanguages,whichshould
furthersimplifyfuturecostmodels.

3.5 Schedule Compression

In addition to lowering cost, Ada and reuse were also

expected to lead to shorter cycle times or project

durations. Figure 12 shows that this goal was met not

only by the Ada projects but also by the FORTRAN

projects. Again, the right-hand bars represent the

"recent" projects, or those that achieved high reuse

levels. Because this is a schedule comparison, no

adjustment is needed to compensate for the
MTASS/MSASS effort. The division of labor and

reduction in communication that is made possible by

having these separate teams, however, is likely to be

responsible for shortening the recent FORTRAN

development schedules. Because the FORTRAN

AGSSs and the Ada telemetry simulators are affected

by different external forces, a cross-language

comparison of cycle time makes no sense. But a

comparison of the early and recent project groups in

each language shows improvement.

The software development process did not change

immediately with the advent of high reuse, however.

As mentioned in the discussion of process, the

schedule for the first high-reuse project in each

language was more similar to those of the early

projects than it was to those of the recent, high-reuse

projects. Change in the overall development process

occurred only after the EUVE project demonstrated

that substantial savings could be achieved through

large-scale reuse. When management was able to

observe the potential savings from reuse, procedural

and scheduling changes were made to allow an

expedited development process whenever high reuse

was possible. Reuse can permit shortened project

schedules, but it is necessary to accommodate this

different scenario with an appropriately pared-down

process. See section 3.3 for a discussion of these

process changes.

35.0

30.0

r/3

"_ 25.0
O

= 20.0

Q

15.0

1o.o

,_ 5.0

0.0

27.4

i

Early Ada

45% reduction

15.2

30.0

I I I I

Recent Ada Early

FORTRAN

25% reduction

I 22.5

I

Recent

FORTRAN

Figure 12. Average Project Duration

35 SEL-95-001

3.6 Reliability

The last explicit goal for the planned Ada transition

was to increase the quality of the delivered systems.

The density of errors discovered during development,

which is measured on all FDD projects, was used to

represent system quality and reliability (there was

insufficient operational data to conduct a reliability

analysis). Development-time errors are a useful

indication of quality because they reveal the potential

for latent undetected errors and indicate spoilage and

rework during development.

The number of errors discovered per thousand state-

ments of new and modified software before delivery

is shown in Figure 13. The densities shown are based

on only the new and modified code (verbatim reused

code was not included in the denominator), so these
reductions cannot be attributed to reuse. Instead, the

reduced error rate is attributed to improvements in

the development process that were instituted on all

FDD projects during this period. These improve-
ments included the use of object-oriented or

encapsulated designs and the use of structured code

reading and inspections. The fact that these process

improvements were applied to projects in both

languages is reflected by the similarity in the error-

density reductions observed. The error density

reductions were significant at the .01 level for both

languages (using a two-tailed Student's t-test).

3.7 Performance

System performance was not an explicitly stated goal

for the programs developed in Ada, but it turned out

to be a major issue. By 1985, the programmers in the

FDD had achieved such proficiency with FORTRAN

software design and implementation that even the

most complex flight dynamics systems performed

adequately without any special attention being paid to

performance issues during design. Thus, perform-

ance had become an implicit expectation and was not

addressed in software requirements, designs, or test

plans.

Figure 14 depicts the relative response times of the
delivered simulators between 1984 and ! 993, where

the response time indicates the wall-clock time
required to simulate an interval of data (hours

responding per hour of data). A smaller response

time indicates better performance. The figure reveals

that the first Ada simulator performed very poorly

12.0

I o.o

"_ 8.o

1¢

"_ 6 D

4.0

J
t--

2.0

0.0

10.5

i!i_i_+iiiiiiiili/iii!!i!iiiii!iii_
_i++iiii+i+iii+iiii+i_i+itit+iiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiii!ii_iii_iiiii

ii+iiii_ii_iii!iiii'_i_i!iiiiiiii_
:::::::::::::::::::::::::::::::

 i iiiiiiiiiiiii i i!+ iiiiii!

iiitli_iiiii_iiiii_i!iii'iiii
it:iiiti',iii!_iiiiiili_ill

:::::::::::::::::::::::

+iiiiiiiiiiiii_iiiiiiiiiiiii_+,_

Early Ada Recent Ada

49% reduction

5.4 /

11.1

::

+ : +
+

i

Early
FORTRAN

Ada vs. FORTRAN, Early vs. Recent (improved

39% reduction

6.8

+iii!ii_ii+_ii!i+iiii!iiii_i+i+iiiiii+i+t_i_ii+_i

i!!¢!+!!+i!!t:+!!!+!t+ii!iti!!i+!t!:+!i!!t!

i!:itili_i!ii_iii_iti_i:i_i_i_t!ii_i_i_;ili!iiiiliiii

:::

Recent
FORTRAN

process) Projects

Figure 13. Error Densities on Early and Recent Ada and FORTRAN Projects

SEL-95-001 36

comparedwithpredecessorFORTRANsimulators.
BecauseAdalanguagebenchmarkshadshownthat

Ada executed as fast as equivalent FORTRAN

programs and because performance was not an

explicit goal, developers of the first Ada project paid
little attention to performance. Instead they focused

on learning the language and developing reusable,

object-oriented software. Predictably, as novice

users of this fairly complex language, they did not

produce an optimum design or implementation. But,

their system was delivered for operational use, so the

FDD users' first encounter with an Ada system was

negative. This impression was accentuated by the

fact that, because of scaled-down processing

requirements, the FORTRAN simulator delivered

immediately before the first Ada simulator was the
fastest simulator ever delivered in this environment.

In retrospect, it appears that attempts to maximize use

of OOD while lacking extensive experience with the

technology probably contributed more to the initial

poor performance than did Ada. This points to a

basic flaw in the approach taken to the evaluation of

this new technology: Conflicting goals had been

established for Ada by combining its study with the

use of OOD. It was then difficult to separate the

effects of the language from the effects of OOD

techniques, resulting in the language being faulted for

the run-time overhead caused by data access

procedures and by multiple layers of abstraction.

In addition to the overhead from OOD, the 1990 Ada

performance study s revealed that some of the coding

techniques practiced in FORTRAN to achieve high

efficiency actually worked against efficiency in Ada,
and that some of the data structures around which the

designs were built were handled very inefficiently by

the DEC Ada compiler. The study resulted in a set of
Ada efficiency guidelines 9 for both design and code,

which are now being followed for all new Ada sys-

tems. Interestingly, to comply with those guidelines,

the last two Ada projects in Figure 14 had to forgo a

certain amount of reuse (compare with Figure 5).

(The slower POWITS simulator was completed
before these guidelines were available and it also had

considerably more complex processing requirements

as well as other complications.)

As shown in Figure 14, a typical Ada simulator now
performs better than most of the earlier FORTRAN

simulators. First impressions are very important,

though, and some FDD programmers and users still

hold the perception that Ada has performance

o 2.0

1.8

1.6

._ 1.4
o_ 1.2i.

:_ !.0

._ 0.8

0.6

0.4

0.2
o

0.0

Simulator Response Times Relative to Real Time

0.5

2.0 2.0
i i

0.3 0.4 0.4

0 m 0 0 m _ m

D FORTRAN []Ada 1

0.2
0.1

:r---'l: I"'-]..

Figure 14. Performance Times of Ada and FORTRAN Simulators

37 SEL-95-001

problemsand that systems demanding high

performance should not be implemented in Ada.

Recent impressions have been more favorable toward

Ada, however. These impressions are discussed in

detail in section 4. In fact, subjective data collected

about Ada simulator performance (analyzed in

section 4) reveal that those with recent Ada

experience have no complaints about performance.

Another indication that performance is no longer an

issue is that performance benchmarks are no longer

run for the Ada products, although current perfor-

mance requirements are more demanding.

3.8 Summary of the
Comparisons

The quantitative data gathered over the past 10 years

show clear improvements attributable to the use of

the Ada language in all of the initially specified goal

areas. Many of these improvements were directly

related to a considerable increase in reuse. Although

the FORTRAN systems gave the impression of

comparable results over the same period, the cost

savings from reuse were considerably lower in

FORTRAN when the added cost of maintaining the

reuse libraries was factored into the net delivery

costs. Further, the expansion of statements per unit

of functionality needed in the high-reuse FORTRAN

projects further offset the apparent gains in

productivity as measured simply by the size of the

delivered product.

With respect to improvements in schedule and error

density, Ada and FORTRAN performed comparably.
The initial disappointments with Ada with respect to

performance were subsequently eliminated through

analysis and by the adoption of performance-

sensitive Ada design guidelines.

Therefore, the study found no quantitative evidence
to indicate that the Ada language can not be used

successfully for all FDD projects. In fact, the data

show every indication that Ada is a good choice for
increased usage on more FDD systems, particularly

larger, longer-lived, highly reusable systems.

SEL-95-001 38

Section 4. Qualitative Analysis

Despite the promising quantitative results that

accrued from the use of Ada, the adoption of Ada at

the FDD was slower, more difficult, and less wide-

spread than expected• As is often the case with

technology infusion, several external and internal

subjective factors impeded the FDD's transition to

Ada. Factors such as the limited availability of Ada

compilers and tools, negative feedback from the users

of the developed systems, and an adverse and

vehement minority opinion within the software

development organization all had detrimental effects

on the adoption of Ada. This section discusses these

factors and their impacts on the goal of transitioning
to Ada.

4.1 Vendor Tools and Support

Finding adequate vendor tools to support Ada
development in the FDD was a major obstacle. In

1985, when the FDD began its work with Ada, most

computer vendors were either actively developing
Ada compilers and development environments or had

announced plans to do so. The FDD believed that,

within a few years, vendor tools would be widely
available for Ada. But, consistently usable Ada

development environments and reliable Ada com-

pilers never became available across the platforms

used at the FDD to develop and execute software

systems.

With only one small exception, all the Ada projects at

the FDD were developed using DEC Ada on VAX
minicomputers• The DEC/Ada products available on

the VAX platforms were rated by FDD developers as

being sufficient to enable viable Ada development.

However, 80% of the software developed in the FDD

must execute on the standard operational environ-

ment, which is an IBM mainframe. Traditionally,
FDD systems have been developed on their target

platforms because this simplifies testing and

deployment. Unfortunately, an adequate Ada

development environment was never found for the
IBM mainframe.

In search of a solution to mainframe development,
the FDD conducted three studies between 1989 and

1992, all of which declared the IBM mainframe

environments unfit for Ada software development or

deployment. In 1989, the FDD evaluated three

• 18
compilers and selected one for purchase and further

study. Somewhat discouraged by this study, which

rated the best compiler as having only marginal

performance for flight dynamics computations and no

development tools, the FDD investigated an

alternative approach.

Because Ada was touted to be highly portable, the

FDD conducted an alternative portability study to

determine whether systems could be developed in

Ada on the VAX and then transported to the

mainframe for operational use. This study (discussed

in section 2.4.3) ported one of the existing

operational Ada simulators from the VAX to the IBM

mainframe using the Alsys IBM Ada compiler,

version 3.6. The study found that relatively few

software changes were required and that the resulting

system performed adequately on the mainframe, but

that rehosting was extremely difficult because of

compiler problems and the lack of diagnostic tools

and library management tools. Although rehosting

the system required only a small amount of effort, it

took nearly as much calendar time as was needed to

develop the system from scratch, due to the problems
encountered.

An alternate approach would have been for the FDD

to purchase the Rational Ada Environment, which

would have allowed development of Ada components

specifically tailored for IBM mainframe compilation.

This cross-targeting strategy, developed by Rational
to solve many of the problems associated with

delivering Ada software on mainframes and other

platforms with inadequate Ada environments, would

have involved purchasing additional hardware as well
as software tools and licenses. Given that the VAX

provided a viable Ada development environment, the

FDD did not seriously consider converting to the

Rational development environment. Additionally,
the cost to use Rational in 1991 would have come to

about $35K in hardware and software per seat, an
amount which the FDD deemed excessive.

In the fall of 1992, the FDD again conducted a
compiler evaluation on what were supposed to be

greatly improved products. This study 19 used the

ported simulator as one of its benchmarks and ended

up selecting a different compiler than the earlier

study. Although the chosen compiler performed

better than other candidates and was accompanied by

39 SEL-95-001

amodesttoolset,thestudywarnedagainstusingit to
developreal-timeor large-scaleFDD systems
becauseof its inefficientcompilingandbinding
performance,immatureerrorhandling,andpoor
performanceof file input/output.Onlyin late1993
did the FDD achievesome limited success
developingasmallutilityinAda(theFASTGeneral
Torquer Command Utility*) on an IBM RS-6000

workstation and then porting and deploying the

software on the mainframe. This approach to

developing Ada systems for mainframe operation is

the first to show any real promise. In addition, this

has been the only instance of Ada software

development on a workstation platform. While the

FDD had hoped to begin earlier investigating the

appropriateness of using workstations to develop and
execute Ada systems, the cost of suitable software

development environments on workstation platforms

has been prohibitive.

In addition to its disappointment with the mainframe
development environments, the FDD also

experienced only qualified success using Ada to

develop an embedded system. The FDD's R&D

effort to develop an embedded application on a Texas

Instruments 1750A machine using the TARTAN Ada

compiler led to interface problems between the

hardware and software. Ultimately, the lack of

diagnostic tools contributed to insoluble problems

that resulted in an end product with reduced

capability (discussed in detail in section 2.3.1). This

experience added to the general feeling among FDD

developers that the level of vendor support available

was unsatisfactory for viable Ada development.

4.2 Ada Perspectives Within
the FDD

Technology transfer of any software engineering

technology involves people: users, software
developers, and managers. The introduction and

usage of Ada within the FDD sparked much

controversy. The independent assessment team

sought to determine the impact of the Ada technology

on the people of the FDD and to understand the

degree to which the attitudes of the various groups
impeded or facilitated the infusion of Ada in the

*This FDD Ada product is not included in the project data
analyzed for this report. It is a unique entity in this
environment in that it is an AGSS subsystem written in
Ada; therefore, it did not fit into any of the defined project
sets.

FDD. This section presents the key findings from

interviews and surveys conducted during the

independent assessment.

4.2.1 User Perspective

As mentioned in section 2, the SEL conducted a

performance study in 1990 largely because feedback

from the user community indicated that the Ada

systems were not as fast as their FORTRAN

predecessors, and were therefore unacceptable. A

survey of 18 users taken in late 1991 showed that
performance ideals varied considerably among the

users of the satellite simulators. Performance goals

ranging from one-quarter real time to 15 times real

time were cited by the users, with the most frequently

cited performance goal being at least real time (where
the simulation of 1 hour of data takes 1 hour of wall-

clock time). Most of the recent Ada simulators have
exceeded this goal; however, when the 1991 survey

was taken, only SAMPEXTS, with a simulation

speed of about 3:1, clearly exceeded the

l:lbenchmark. Although the users realized that the

complexity of a simulation and the speed and avail-

ability of the hardware also affected performance,

most blamed the simulators' poor performance on the

Ada language itself.

More recent feedback from the users of the Ada

telemetry simulators has been entirely favorable.

Performance results ranging from 5 times real time to

as much as 15 times real time are now being reported.

In fact, performance is no longer even considered an
issue to the users of the Ada simulators. One

indication of this is that no performance benchmarks

have been run or requested for quite some time.
Likewise, interviews with the AGSS testers and

mission-support users, who use the simulators for

prelaunch testing of the AGSSs and, occasionally, for

testing of emergency repairs during mission support,
did not yield any complaints about the performance
of recent Ada simulators. The users have also stated

that changes to the Ada simulators have been easy to

specify and obtain. They routinely participate in the

analysis of changes recommended to accommodate
new requirements.

This current situation with respect to the usability and

performance of the Ada simulators is in stark contrast

with the situation reported even as recently as 1992.

In fact, a major motivation for conducting the

independent assessment was to determine the future

course of action to address the problems encountered

using Ada at the FDD. Apparently, the efforts of the

SEL-95-001 40

softwaredevelopersto focus on and improve

performance of the TOMSTELS and FASTELS

simulators in particular was well worth the sacrifice
in reuse.

4.2.2 Developers' Perspective

During the past 2 years, the independent assessment

team conducted two surveys to gather insight into the

perspective of the software development staff. The

first survey addressed those developers who had

direct exposure to Ada, those who either used Ada on

the job or attended Ada training, to measure their

attitude about the language. The second survey,

which addressed the total FDD software development

population, measured how each respondent felt about

the future of Ada in the FDD. Both provided insight

into the overall impact that the introduction of the

Ada technology has had on the people in this

organization. Key findings from the analysis of these

survey results are presented in this section. The

survey forms are included in Appendix C.

The first survey gathered information from 35 FDD

developers who had been trained in or had developed

systems in Ada. Developers were asked which

language they would choose for the next simulator

project, which language they would choose for the

next ground support system, and why. Figure 15

shows the sum of their responses.

Most agreed that Ada should be used for the next

simulator, but that FORTRAN should be used for the

next ground support system, citing the availability of

reusable components and architectures as the

deciding factors. But, significant minorities in each
case recommended use of the language not

customarily used for each type of application. The

23% who preferred to use FORTRAN instead of Ada
for simulators cited the complexity of the Ada

language and poor performance as reasons to
abandon Ada, while the 30% who preferred to use

Ada instead of FORTRAN to build the next ground

support system felt that Ada was a better language for
building larger systems. Interestingly, several of the

developers did not care one way or the other about

which language they used for software development,

with two developers specifically commenting that

"Ada is just another language."

Nearly all the developers exposed to Ada pointed out

that adequate tools are essential for efficient and

accurate Ada development, whereas FORTRAN

development can be accomplished with little or no
external tool support. In particular, they cited the

need to have tools to help them with the Ada

compilation dependencies that allow Ada's

sophisticated error checking during compilation.
Interestingly, those who had training followed by on-

the-job experience responded positively about Ada,

whereas those who had training and no hands-on

Simulators

(Ada Domain)

Attitude Ground Support Systems

(FORTRAN Domain)

Figure 15. Language Preference for FDD Systems

41 SEL-95-001

work experience using Ada had a consistently

negative opinion of the language. This indicates that

the language is hard (complex) to learn, but that, with

day-to-day experience, one becomes proficient

quickly and experiences the benefits of the language.

As of March 1994, only 25-30% of the development

community had been directly exposed to Ada.
However, it was clear from interviews and

discussions with FDD personnel that there had been a

broader impact on the organization as a whole. Two

significant minority groups had emerged who were

strongly opinionated about language use, one in favor

of Ada and the other opposed. Both groups had been

fairly vocal and forthcoming with their views

throughout the transition to Ada. The second survey

was designed to capture the views of the developer

community as a whole and to look for a possible

effect that these vocal minorities may have had on the

remaining group of developers who had not yet been

trained in or exposed to Ada.

The second, broader survey (see Appendix C)

collected responses to questions about basic

background information as well as opinions about the
use of Aria at the FDD. Background information

included job category, FDD experience, computer

language experience, and Ada exposure. Ada

opinion questions included whether the use of Ada

was appropriate at the FDD, whether Ada should be
restricted, whether its use should be increased, and

whether its use should be decreased. The survey

team collected 103 responses from developers

(including maintainers and testers), 15 responses

from managers, and 7 responses from SEL
researchers and others. In order to ensure candid

responses, respondents were given the option to

return the surveys anonymously.

Approximately half of the developers answered

"don't know" or "don't card' to all four Ada opinion

questions. Of the half who expressed opinions, a

clear majority was positive about the appropriateness

of Ada at the FDD. Most felt that the level of usage

should remain roughly constant, neither expanding

nor reducing the amount or type of application

software developed in Ada. Table 8 presents the

responses for those who expressed an opinion. The
balance of this section summarizes the views of the

developers surveyed.

The backgrounds of those with the strongest negative

opinions about Ada provided some insight into

probable causality. Source of Ada information and

knowledge appears to be a key contributor. Of those

with the most negative responses, only 1 in 8 had on-

the-job experience with Ada. The others had only

taken an Ada class or self-studied it, or had no real

exposure to Ada at all. (Among those expressing

opinions in general, fully one-third had Ada work

experience, confirming that work experience

improves one's opinion of the language.) Responses

from those developers who received their information

about Ada only from others at the FDD indicated that

negative opinions about Ada were more likely than
positive ones to influence those with no formal Ada

exposure.

The survey also revealed a slight negative effect from

in-house Ada language training when it was not

followed by Ada work experience. This supports

anecdotal evidence that the in-house training given at

the FDD was detrimental to the typical developer's

opinion of the language, while further confirming the

positive effects of Ada work experience. Subsequent
investigation revealed that responses varied

depending on the specific class and instructor who

conducted the Ada training. The classes conducted

by a trainer from an outside organization were

generally better received than those conducted by in-
house Ada experts.

Table 8. Ada Survey Responses for Developers Expressing Opinions

Ada Opinion Questions

Is Ada appropriate in the FDD?

Should Ada use be restricted?

Should Ada use be increased?

Should Ada use be decreased?

All Developers Developers Without Ada Experience

Yes

50%

67%

0%

Yes No

79% 21%

44% 56%

35% 64%

37% 63% 100%

No

50%

33%

100%

0%

SEL-95-001 42

Thelengthof timespentattheFDD,thenumberof
yearsof FORTRAN experience, and the number of

computer languages known had no effect on a

developer's opinion of Ada. However, a higher than

average number of recommendations to decrease the

use of Ada came from the customer organization as

compared with the FDD contractor organization. To

obtain a more complete picture of the range and

distribution of Ada opinion, including the distribution

by organization, the responses to the four questions

were converted to composite scores. Positive values

were assigned to positive Ada opinions and negative

values to negative opinions. Zero values were

assigned to "don't know" or "don't card' responses.*

Figure 16 shows a frequency distribution of the

composite scores. The tallest bar, at the neutral score

of zero has been truncated to clarify the shape

elsewhere in the histogram. The tendency for

frequencies to diminish outward from the center is

interrupted by "bumps" in both tails. These bumps in

the curve at both the extreme positive and the

extreme negative scores reflect the strongly

opinionated and polarized minorities on both sides of

the Ada issue. Opinions expressed by the bulk of the

respondents, though, fell squarely in the middle,

indicating a vast majority having no bias whatsoever.

The contractor organization expressed a more

positive overall opinion of Ada than the customer

organization. Contractors believed that exposure to

and experience with new technologies would make
them more marketable and would lead to better future

career opportunities. The marketability of Ada
developers was confirmed in 1989 when the

contractor organization lost several of its most

experienced Ada developers after the initial Ada
projects were completed. For various reasons, often

purely economic ones, several developers chose

career moves away from the FDD at a critical time in

the Ada transition. Although some of the most

*Weightings were applied to reflect the strength of opinion
indicated by the response. The weighting scheme was
tuned slightly in order to normalize the sum of all
developer opinion scores to near-zero (i.e., so distribution
of scores was balanced on either side of zero). The weights
for each response did not appear on the original survey
questionnaire. Because the questions were designed to be
particularly revealing of negative opinions, the lowest
possible score is -7 while the highest possible score is +5.
Independent of the high frequency of zero scores due to
"don't care" or "don't know" responses, the distribution
appears to be roughly balanced (the average of all non-zero
scores was -0.02, or nearly zero).

knowledgeable Ada developers remained in the FDD,

this migration removed a core of Ada experience and

opened the door for many new developers to gain

Ada experience. Had this exodus not occurred, the

subsequent Ada projects would probably have

proceeded more smoothly, resulting in a more posi-

tive attitude towards Ada among all FDD developers.

Nevertheless, the remaining developers in the

contractor organization learned first-hand of the

opportunities available to their colleagues with Ada
experience. Now, in the mid-1990s, C and C +_ seem

to have replaced Ada as the languages that

developers feel will make them more marketable.

The written comments on the survey forms expressed

additional observations, perceptions, and points of

view about Ada. The most prevalent theme among

these comments was the need for adequate tool and

vendor support when committing to Ada. Specific

references were made to the incompatibility of Ada
and the IBM mainframe architecture as well as to the

need for reliable vendor support. The lack of readily

available packages for interfacing Ada with software

toolboxes and other languages was also cited as
detrimental.

Next to inadequate tool support, the most commonly

mentioned point about Ada was the difficulty

experienced in learning and using the language

properly. Five developers said either that Ada was

hard to learn or that other languages, such as C, were
easier to use. Additional specific disappointments

included difficulties with Ada input and output and

the complexity of doing true OOD with Ada.

Not unexpectedly, the written comments tended to

parallel the Ada opinion scores obtained from the

other questions in the survey. The polarity of opinion

present at the FDD can be seen here, because the

strongest opinions, both negative and positive, were

usually held by those at the extreme ends of the

opinion score distribution. Overall, there were three
unconditional endorsements and six qualified
endorsements of the use of Ada in the FDD. On the

other hand, five respondents wrote completely

negative comments about Ada and another seven

were generally pessimistic or skeptical about Ada.

4.2.3 Management Perspective

Fifteen managers provided responses to the second

Ada opinion survey. Among the management subset,

the average tenure at the FDD was greater than

13 years, as opposed to less than 6 years average

43 SEL-95-001

t_

E

50

48t
12 -

Composite Ada Preference Score

)j)j!i)))!))j)))))))
r

ii!iiiiiiiiiiii
)i:;ii:_ii!i_!

iiiiiiiii_!i,
ii!:iiii):i!

i iiiiii]ii
"i:ri_i!i:i:_ii_i

ii)))_,))i_)i
iDL]_i_))))))!

ili]i!ii_,[i:iii:i

)ili_)ii_!:i_):
:jl]!F)Fj',I)Fj_)Fj

I

0

)))

)))))))j)))))
L;.: i}i_

_ ;):.)))

![:]

:2:
:]:::::::::: t

!

1 2

)))))i)))[i6Y_)

i !i!iiii!ii il
i!ii!iiiiil

)JLJ))ii)))J)i
, i))!)i!iii)iii))!,
! m m

3 4

iiiii]ii_i)]i_j

_!i!)!i!!i!i!,
I

5

Figure 16. Distribution of Developers" Ada Preference Scores

FDD experience among the developer subset.

However, the average manager had facility with only

two languages whereas the average developer knew

more than four. The average manager had 15 years

experience in FORTRAN whereas the average

developer had about 9 years of FORTRAN

experience. Fewer managers had computer science

or physics backgrounds but slightly more had

mathematics backgrounds as compared with

developers.

The average management composite score was

slightly more positive towards Ada than the average

developer score. In general, manager opinions

reflected those of their staff. In fact, the division

between the customer and contractor organizations

was the only clear correlate to the Ada opinion score,

with the 5 managers from the customer organization

averaging to a net negative opinion and the 10

managers from the contractor organization averaging

to a net positive opinion about Ada.

About half of the managers (8 of the 15) had Ada

exposure but only one had actual on-the-job

experience using Ada (one other had managed an

Ada project). Classes or seminars in Ada constituted

the only exposure to the language among the other

six. The half with no Ada exposure (7 of 15)

obtained their information from others both within

and external to the FDD; only one cited additional

sources for his knowledge of Ada, including

literature and conferences.

Interestingly, the biggest difference between

developer and management opinion came from the

substantially greater percentage of managers who

favored restricting the use of Ada as compared with

developers. This appears to be a sign of caution

among managers. When compared with developers,

managers did not express any greater or lesser

interest in either expanding or reducing the use of

Ada, however they did more often wish to avoid the

unrestricted use of the language.

SEL-95-001 44

4.3 Net Result

Figure 17 depicts the growth of Ada software being

delivered each year during the Ada study period. A

sharp decline in the amount of development occurred

in late 1990. It was at this point that the FDD had

planned to begin developing parts of the larger

ground support systems in Ada on the mainframes.

However, the results of the early Ada compiler

evaluation and the portability studies made it clear

that developing on the mainframes, or even

developing elsewhere and porting to them, was not

feasible. Thus, the growth of new Ada development

stalled at this point.

At this same point in time, the FDD's simulation

requirements changed, reducing the number of

simulators needed to support each spacecraft mission

from two to just one. This change resulted in a
further reduction in the amount of software slated for

development in Ada. The net result was a substantial
reduction, instead of the envisioned increase, in the

rate of Ada software delivery. The drop in Ada

development is even more dramatic when the amount
of reused software is eliminated from the totals and

only the investment in new Ada code is considered.
The flatter, dashed line below the curve for

cumulative delivered size in Figure 17 removes the

effects of reuse by showing only the number of new
and modified lines that were delivered.

The unavailability of an adequate Ada development

environment on the IBM mainframe was clearly a

significant stumbling block for the FDD in its

transition to Ada. Had the FDD been able to expand

Ada development into the mainframe environment as

originally planned, much of the operational software
that now exists in FORTRAN would have been

written in Ada. Much more of the staff would have

gained hands-on work experience in Ada, which,

based on the data presented in section 4.2.2, would

have led to a more positive reaction to the language.

If the FDD were to continue to use mainframes as its

principal operational environment, there would be no

straightforward way to fully transition to Ada.

However, the FDD has committed to and has begun

transitioning to open systems for operational support.

In the future, software will be developed and

deployed on workstations in a networked environ-

ment. Thus, a full transition to Ada will depend on

the viability of using it for workstation development

on a larger scale.

A recent FDD internal study found that Ada develop-

ment environments are very expensive compared

with development environments for other languages

that support OO development. The typical cost for

an adequate Ada development environment for a

single workstation seat ranges from $8.5K to $17K,

depending on the quality and completeness of the

tool suite. Conversely, a comparable development
environment for C or C _ ranges from $2K to $3K

per workstation seat. Thus, the high cost of work-

station development environments now poses the
most serious risk to the future use of Ada in the FDD.

100o--]

800-

Planned °." FASTELS

gro • ,_..__ Delivered
Turning point wth, lines

_ TONSVPO_

EUVED_[M / SAMPEXTS New lines

600-

EUVETELS_, -/°

GOADTd J_: 400-

UAJISTEy

2o0-
m

I I I I | I I

1/87 1/88 1/89 1/90 1/91 1/92 1/93

Figure 17. Growth of FDD Ada Software

45 SEL-95-O01

Section 5. Conclusions and Recommendations

Overall, the FDD benefited greatly from its exposure

to and work with Ada. Although, nearly 10 years

after Ada's introduction, the FDD uses it to develop

only 15-20% of its software, many of the concepts

and disciplined software engineering practices

associated with Ada have been adopted in the

development of all new systems, no matter what

language is used. By using OO techniques, such as

domain analysis, data abstraction, and information •

hiding, the FDD has increased its reuse of software

by 300%. This in turn has led to reduced mission

cost and cycle time for FDD products. Thus, the

FDD achieved its original goal of reducing cost and

cycle time by maximizing reuse via the introduction

and use of the Ada language and OOD.

Although the SEL's assessment of this technology

has shown it to be beneficial, it is unlikely that the

FDD will fully transition to Ada as its language of

choice. The lack of mainframe development environ-

ments and the high cost of viable Ada software

development environments for workstations continue

to be a barrier against using Ada to develop the bulk

of the FDD's systems. Up until now there has been

no driving reason to change languages. However, the

results documented here show good reason to move

away from FORTRAN. As it moves to a distributed
workstation hardware environment, the FDD has the

opportunity to select a new, cost effective

language(s) for its future. Weighing the tradeoffs

between short-term costs, such as software develop-

ment environments for workstations, against software

development process and product issues and the long-

term costs of software maintenance, the FDD is likely
to find Ada a good choice. °

The key findings and technology transfer lessons

learned from this research and analysis are
summarized below. Recommendations are made

regarding the future use of Ada in the FDD.

Key Findings

Use of Ada and OOD in the FDD resulted in:

- Increased software reuse by 300%

- Reduced system cost by 40%

- Shortened cycle time by 25%

- Reduced error rates by 62%

By 1990, projects using Ada and OOD were

experiencing measured improvement. When
compared with the SEL baseline that existed when

the Ada assessment began (1985), projects using Ada

showed improvement across the board in cost,

schedule, and quality as a result of achieving
unusually high levels of reuse.

The experimentation with Ada and OOD served

as a catalyst for many of the improvements seen

in the FORTRAN systems during the same
period.

In 1985, Ada was arguably more than just another

programming language. However, by exposing the

organization to the concepts of information hiding,

modularity, and packaging for reuse, that which was
"more than a language" was adopted, to the extent

possible, by the FORTRAN developers as well as by

the Ada developers. Anecdotal evidence supports the

theory that Ada served to catalyze several language-
independent advances in the ways in which software

is structured and developed across the organization,

and that these benefits have been institutionalized by

process improvements. The exposure of many

managers and application experts to object-oriented

design via Ada projects served to open their minds to

new ideas on other projects. FORTRAN AGSS

designers met significantly less resistance to using

object-oriented concepts to redesign the well-
established, well-understood standard architecture for

AGSSs than had been typical when design

alternatives were proposed previously.

FORTRAN systems applying object-oriented

concepts also showed significant improvement in

reuse. Like the Ada projects, higher reuse led to
reduced cycle times and lower error rates on the

FORTRAN projects. However, they did not

experience similar cost savings; use of Ada

resulted in greater cost reductions for systems

with roughly comparable levels of reuse.

The FORTRAN systems also showed improvements

in schedule duration and quality attributable to

increased levels of reuse when compared with the
1985 baseline. However, the cost reduction was not

nearly as significant as with the Ada systems. This

was largely due to the effort required to maintain the

reusable software. Whereas the use of Ada generics

47 SEL-95-001

allowed project personnel to reuse code through

parameterized instantiation rather than repeated

modification, the FORTRAN systems required a

separate maintenance team to enhance the reusable

components (add new capabilities). Although the

separate maintenance team could make the modifica-

tions as efficiently as possible (due to familiarity with

the code) and the cost of reusing the code from the

projects' point of view was virtually nothing, the

additional cost of supporting a separate maintenance

team nearly negated the savings.

• Use of Ada resulted in smaller systems to

perform more functionality; while generalization

increased the size of the FORTRAN systems.

The use of Ada generics to implement a generalized
architecture in the UARSTELS simulator resulted in

a system that was 17% smaller than its predecessor

(GOESIM) and performed 10% more functionality.

Conversely, generalized FORTRAN subsystems are

10--40% larger than earlier single-mission versions.

Also, over time, the generalized FORTRAN com-

ponents have grown as they are enhanced to support
new missions, while the size of the generalized Ada

components has remained fairly constant.

• Lack of viable Ada development environments on

the FDD's primary development platform

severeh' hampered the transition to Ada.

When the FDD began using Ada, the availability of
vendor tools was of little concern. DoD's mandate

that all of its systems be developed in Ada was

expected to provide a substantial market for Ada

compilers and tools. However, in reality, DoD

developed far fewer systems in Ada than expected.
This decreased the demand, and vendors lost their

incentive to supply Ada support tools. When it

became apparent that no vendor planned to provide a

full Ada development environment for the IBM

mainframe, the FDD had limited options. Because

the FDD had just installed a new IBM mainframe, it

could not change hardware for at least 5 years. It had
neither the money nor the clout (size) that a large

company or government agency might have had to
offer vendors the incentive to build an Ada

environment for the IBM mainframe. Another option

available at the time, the Rational development

environment, which other IBM-mainframe-based

organizations were using, was prohibitively
expensive for the FDD.

Thus, in 1990, when the FDD was ready to expand to

full use of Ada, it could not. This essentially stalled

the FDD's transition to Ada. Although simulators

continued to be built in Ada and a small group of

people continued to develop plans and approaches for

building reusable building blocks and architectures in

Ada that would be used to construct systems on
workstations in the future, much of the workforce

continued to be untouched by the technology. This
standstill allowed other languages (such as C, C_) to

make advances as viable alternatives to Ada, and

allowed opponents of thd technology within the

workforce to raise doubts about Ada among those

who had never been directly exposed to the

technology.

The high cost of Ada development environments

on workstations may deter future use of Ada as

the FDD transitions to open systems.

Today, as the FDD prepares to transition from the

mainframe environment to open systems and

software development on workstations, the organiza-
tion is faced with a large investment for new

hardware and support software. Ada development

environments (compilers and the necessary software

development tools) cost significantly more (3-8

times more per seat) than development environments

for other languages that are commonly used with
OOD, such as C _. This poses a financial barrier

against the FDD's future use of Ada that should be

weighed against the potential savings of building and

maintaining systems using Ada.

The introduction of Ada sparked much

controversy within the FDD. At this time, most

of the FDD workforce is lukewarm toward using

Ada, with two vocal minorities for and against

its continued use. However, most personnel

support the use of object-oriented techniques.

A defmite negative attitude toward Ada exists among

a small percentage of developers and managers in the

FDD who have no direct working experience with

Ada. In addition, two small, but vocal groups of
people have demonstrated a very strong bias for and

against Ada, respectively. Both of these groups

appear to have contributed to the negative bias

among the general population: the proponents by

overselling the technology and the opponents by

negative campaigning. Interestingly, there does not

appear to be a corresponding bias against OOD.

SEL-95-001 48

Nearlyall of thepeoplebelievethatOOtechniques
arebeneficialandlookfor waystoapplythem,no
matterwhatlanguagetheyareusing.

Technology Transfer Lessons Learned

Technology insertion takes a long time,

especially when several technologies are com-

bined or when the technology affects the full

development life cycle and requires a significant

amount of retraining.

It took approximately 5 years for the FDD to

transition to regular routine use of Ada for a par-

ticular class of systems. It took nearly 2 years longer

to understand the process differences well enough to

produce a standard process for Ada projects.

• Parallel development experiments are an

effective way of minimizing the risk of a major

new technology to the organization; however,

the project using the new technology must be

tightly managed to maximize value and minimize

negative effects.

Use of the GRODY parallel development experiment
to introduce Ada and OOD to the FDD had both

positive and negative effects on the technology

infusion process. On the positive side, it eliminated

the risk to operational software, thus allowing free

and complete exploration of the technology.

However, loose management of the experimental

project led to inflated functionality and nonadherence

to schedules. Because of the inflated functionality,

direct comparisons of size and error rates were not

possible; and the lack of adherence to deadlines made
it hard to compare costs and life-cycle schedules.

These factors compromised the integrity of the

experiment and contributed to the perception within
the FDD that Ada is a "sand-box" (or experimental)

technology.

First impressions are very important; be careful

to understand and set realistic expectations

regarding the new technology for everyone

affected.

First impressions caused many problems during the

FDD's experience with Ada. Because the developers

did not anticipate the impact of the new language and

design decisions on system performance, they did not

focus on performance requirements during the
development of the early systems. Unprepared users

were very disappointed in the performance of the

early systems and blamed the technology rather than

the way in which it had been applied. Today, it is
hard to find a dissatisfied user, but it took a lot of

effort to overcome the initial impression that Ada
was "too slow."

Project personnel will focus on and meet the

goals set for them at the expense of those not

explicitly stated. Be careful to consider all

aspects of the new technology when setting goals

for pilot projects, and clearly state all goals and

their relative priority.

Each one of the experiments and pilot projects met

the goals set for them. However, projects often

encountered problems in areas where they sacrificed

or overlooked something because of their narrow

focus on their primary goal. For example, GRODY

personnel explored the new features of the language

without paying any attention to system performance.

And even after GRODY's poor performance was

known, the GOADA and EUVEDSIM teams opted to

reuse inefficient code because high reuse was their

goal. The GOESIM team sacrificed the use of new

Ada features and O0 concepts to guarantee delivery

on schedule and within budget.

New technology advocates are essential to

initiate and sustain the technology transfer

process. However, if they are not sensitive to the

needs and concerns of the organization and its

developers, they will impede rather than

facilitate the process.

The FDD had a few respected technology experts
who were very knowledgeable about Ada and OOD

and who were enthusiastic proponents of the

language. Following their lead, the FDD vigorously

pursued Ada and OOD and tried many new ideas that

moved the technology's application forward in both

industry and the FDD. These technology experts or

advocates were expected to assist people who were

learning and using the technologies for the first time.
However, in some cases, the advocates' zeal for Ada

and lack of real project experience made them less

sensitive to the concerns of the people who needed to

use the new language on real projects. Consequently,

they provided help with technical problems, but did

not acknowledge and constructively discuss others'

frustrations with applying Ada. Gradually people
became disillusioned with the technology advocates

and stopped going to them for help and, in some

cases, began to actively campaign against them. This

greatly impeded the technology infusion process.

49 SEL-95-001

Technologyexpertsareessentialto understanding
andapplyingnewtechnologycorrectly;butnotall
arewell-suitedto theadvocaterole. Advocates

should be chosen carefully and the other technology

experts kept in the background. Outside consultants

should be used for initial training and coaching, and

respected senior personnel and project leaders should

be relied on to be coaches after they have been

trained and have used the technology on a project.

Initial language training is best accomplished by

outside vendors. Local training should focus on

how to apply the language in the local environ-
ment.

Of the two methods used for institutional Ada

training in the FDD, the language courses taught by

outside vendors (external to the local FDD/contractor

organizations) were more successful. The FDD

training experiences indicate that new technology

training is best when taught by an instructor who is

not known within the organization. That way the

technology is not loaded with the extra baggage of

personality conflicts or issues such as contractors

teaching customers with whom they work on a daily

basis. Obviously, local application of the technology

should be taught by someone within the local

organization. Here it is best to use a senior developer
or manager who has learned the technology and

applied it on a project, rather than a technology

expert who may lack "real-world" experience using

the technology.

Recommendations

• The FDD should continue to use Ada whenever

possible. This would include for those systems

that reuse existing Ada code and any other

projects (or portions of projects) that are

expected to be long-lived and can be developed

and deployed on an Ada-capable platform.

Because many of the intended benefits of Ada have

already accrued at the FDD and because the main-

frame obstacle continues to hamper the complete
adoption of Ada, it would be unrealistic for the FDD

to mandate the use of Ada for all software develop-
ment at the FDD.

However, it is also recommended that the FDD
choose to use Ada in all cases where no clear

disadvantage in doing so exists. This would indicate

not only the continued use of Ada on satellite

simulators but also the use of Ada on portions of any

other projects that are expected to be long-lived and

can be developed and deployed on an Ada-capable

platform. As the FDD migrates away from

mainframes and toward workstations, this will be an

increasingly large segment of the software developed.

Over the long term, Ada is a good candidate for

future versions of the large reusable software libraries

that are currently written in FORTRAN and

maintained by a separate group of experts who

continously augment the code's functionality to keep

up with the needs of the client projects. Ada can be

used to implement those subsystems, along with

many other basic domain functions, as sets of

separable and more maintainable abstractions, which

would eliminate the high coupling found in the
FORTRAN versions and lead to reduced main-

tenance costs.

The FDD should build reusable software in a

language that supports object-oriented con-

structs and consider using specialized teams of

experts to configure the reusable components for

each mission. This would likely further improve

the efficiency of the reuse process.

The different reuse approaches used on the Ada and

FORTRAN projects both had advantages and
disadvantages. The best features of each should be

combined to produce a more efficient reuse process.

Reusable software components and architectures

ideally would be implemented in a language that

supports OO constructs, such as generics and strong

typing, as does Ada. This will eliminate the size

inflation experienced by using FORTRAN to emulate
them and make the system more maintainable (less

effort to enhance for future missions). However, the

concept of a separate maintenance team for reusable

software (as is currently used for the FORTRAN

systems) should be retained. This will eliminate the

need for project personnel to understand the com-

plexities of generic architectures and parameteriza-
tion (difficulties encountered by each Ada team in the

FDD). It will also eliminate the configuration

management risks associated with multiple mission-

specific versions of the reusable soft'ware--risks that

will increase as systems grow larger and live longer.

Using this combined approach, the cost of the

separate maintenance group would be expected to be
much lower.

SEL-95-001 50

• The FDD should investigate lower-cost

alternative languages to support object-oriented

development on workstations. However, trade-

off analyses should consider the cost of software

development environments, the efficiency and

quality of software development, and the ease

and cost of long-term maintenance for the

languages under consideration.

Over the next 5-10 years, the FDD will transition

from the mainframes to open systems; future

development will be done on workstations. The

FDD's recent experience on both Ada and

FORTRAN projects has demonstrated that object-

oriented concepts lead to high levels of reuse.

Because FORTRAN implementation of object-

oriented (generalized) designs results in larger, more

cumbersome systems and Ada development environ-

ments for workstations are somewhat expensive,

neither Ada nor FORTRAN may be a practical

language of choice for all future projects. Further

SEL-conducted experiments are recommended to

assess the suitability of one or more lower-cost

alternative OO languages. Experiment results can be

compared against the Ada and FORTRAN baselines

documented in this report. Care should be taken,

however, to consider the long-term implications of a

language choice, not simply software development

project results. For example, the cost savings of

purchasing a C++development environment instead of

one to support Ada could be offset or absorbed by the
extra cost to maintain C ++software.

Note to Readers Outside the FDD

One of the original objectives behind the DoD's

dev.elopment of the Ada language was the goal of

providing a common language that would support the

portability of programs, tools, and personnel across

many projects. Another Ada goal was to provide, in

Ada, a tool beneficial for large-system development

and long-term maintenance. Because the FDD uses a

single language and develops small to mid-sized

systems with relatively short life spans, this

organization was not able to assess Ada in the context

for which it was designed. Hence, readers of this

evaluation should bear in mind that this study reports

only one experience with this technology. As the

findings suggest, the language offers clear benefits

and involves significant investment. The specific

influential factors in any one organization (e.g.,

software domain, hardware environment, long-term

goals) must be considered in any evaluation of Ada's

applicability and effectiveness.

51 SEL-95-001

AppendixA. Project Data

Tables in this appendix present the project data used in the quantitative analysis in section 3 and the 1985 SEL
baseline measures against which change was measured. The project data are from Ada and FORTRAN projects

active in the FDD during the study period.

• Table A-1. Project Size Data

• Table A-2. Project Reuse Data

• Table A-3. Project Effort Data

• Table A-4. Characteristics and Schedule Data

• Table A-5. System Run-Time Performance Data

• Table A-6. Project Error Data

• Table A-7. 1985 SEL Baseline Measures

53 SEL-95-001

.N

4:

.Q

r_

al

SEL-95-O01 54

4
Z

.m

O

tND

55 SEL-95-001

n
a

e-
i11

L

.ID
m

F-

SEL-95-O01 56

1.

.

.

The total effort hours for projects TOMSTELS, FASTELS, TOMSAGSS, and FASTAGSS were adjusted to

compensate for a different testing process that was used on them. On the earlier projects, acceptance testing

hours were not recorded; only developer hours needed to fix errors and finalize documentation were recorded.

On these recent projects, the new independent testing process included both system and acceptance testing;

thus, both were measured. Only one-half of the independent testing hours were included here as a good

approximation of the system testing effort. This provides more comparable effort measurements.

The TOMSTELS and TOMSAGSS projects were stopped during the design phases and then restarted with

substantially revised requirements. Their effort hours reflect only the effort spent atier the project restart.

The MTASS (library task) hours per project were computed by summing the weekly effort hours reported

during the life of each client project. The weekly effort was evenly allocated among the active client projects

that MTASS was supporting in a given week. MSASS supported only one client project. Each

MTASS/MSASS project total was further adjusted to 90% of the actual reported hours, so that only the effort

spent enhancing the reusable components for the client projects would be included. This eliminated the hours

spent fixing problems reported by ongoing mission users.

57 SEL-95-001

Table A-4. Characteristics and Schedule Data

Project Name

GRODY

Mission Type Language Begin End Duration
Date Date (months)

GRO
GOADA GOES
GOESIM GOES
UARSTELS UARS
E_
EUVEDSIM EUVE
SAMPEXTS SAMPEX
POW1TS -Wind-Polar
TOMSTEI_ TOMS
FASTELS
FAST-GTC FAST

DS
DS
TS
TS
TS
DS
TS

TS
TS
TS

AGSS subs

Ada
Ada
Ada
Ada

6/29/85 10/1/88 39
6/6/87 ,_/14/90 " 34
9/5/87 7/29/89 23

2/13/88 12/2/89 22
Ada
Ada
Ada
Ada
Ada
Ada

10/1/88
10/1/88
3/31/90
3/24/90

12112/92

Ada 8/4/92

515190
1/26/91
3/2/91
5/9/92

9/30/93
--ID7737V3----

4/29/94

GROSS GRO _ DS FORTRAN 12/29/84 '_ 10/10/87
GROAGSS - "GRO [AGSS FORTRAN 8/3/85 3/11/89

19
28
ll

26
10
I5--
21

33
43

GROSIM GRO _ TS FORTRAN 8/31/85 • 8/1/87 23
GOFOR _ DS FORTRAN 6/6/87 9/16/89 i-J27 -'_

GOESAGSS GOES AGSS FORTRAN 8/29/87 11/11/89 26
-UARS partial _UARS AGSS partial j FORTRAN 11/21/87 9/15/90 34

-ACME UARS _ FORTRANc 1/30/88 9/15/90 32
UARSAGSS UARS AGSS total i FORTRAN/c 11/21/87 9/15/_-" 34
UARSDSIM _ DS] FORTRAN 1/2/88 _ " J2-9"
EUVEAGSS EUVE AGSS J FORTRAN 10/1/88 9/15/90 23
-SAMPEX SAMPEX AGSS partial J FORTRAN 3/31/90 11/16/91 20
-SAMPEXTP SAMPEX _AGSS partial FORTRANc 3/31/90 11/30/9i " 20

SAMPEX AGSS SAMPEX AGSS total I FORTRAN/c 3/31/90 11/30/91 20 " _

-WINDDV _ _ FORTRAN - 9/29/90 1/2/93 ___---_
-WlNDPOPS Wind-Polar" AGSS partial FORTRAN 6/23/90,5/9/92_23-w poL
ISTP Wind-Polar AGSS total FORTRAN/c 2/10/90 1/2/93 35

TOMSAGSS TOMS-EP AGSS i FORTRAN 2/5/93 4/15/94 i 14
FASTAGSS partial _ AGSS FORTRAN 8/1/92 4/29/94 ! 21 •

1. The TOMSTELS and TOMAGSS projects were stopped during the design phases and then restarted with
substantially revised requirements. Their dates have been adjusted to remove the time gap.

SEL-95-001 58

Table A-5. System Run-Time Performance Data

Project Name Mission Type Language

GOADA GOES

GOESIM GOES

UARSTELS UARS

EUVEFELS EUVE

SAMPEXTS SAMPEX

POWITS Wind-Polar

TOMSTELS TOMS

FASTELS FAST

Simulated

Time to
Clock Time

Clock

Hours per
Simulated

Hour

l S

t TS

TS

TS

TS

TS

TSTS

Ada

Ada

Ada

Ada

Ada

Ada

Ada

Ada

0.50

3.00

2.55

2.60

8.00

0.50

10.00

6.00

2.00

0.33

0.39

0.38

0.13

2.00

0.10

0.17

GROSIM GRO

COBESIM COBE

GOFOR GOES

TS FORTRAN

TS FORTRAN

TS FORTRAN

0.65

2.00

8.00

1.54

0.50

0.13

59 SEL-95-001

"8'

,,Q

o'a

1=

m

I=

[...,

i

E

t_lol-i_ l o

,": _ - ¢q ¢;i ¢_I o_ o

_'.-_t'--j

t",l ¢"q_

i !,

0'_ U'_ o_r '_

¢'_1 e..-.-i oo

, i

oo ¢-,I

.<i <

7"!_"

¢-i_¢':'1_i ,_

t--i

¢'..I

|

ZZ
.<

i l I _ I

i-

_1 t"- t _

_r

i

! i I

-!
N

e_'3 ,'--_ ¢',1

_zz

! i

*et_l
¢_t,4_,...:_,41,4 ,,_ _ " "

I t

I , !

_ o

mlm m

< .,¢i<

.<

• r,_

< <i< <

O"q

¢',,I

Z

I !

SEL-95-001 60

Table A-7. 1985 SEL Baseline Measures*

Productivity 26 SLOC/day
11.8 statements/day

Code Reuse 20%

Error Rate 6.5 errors/KSLOC
14.3 errors/thousand statements

Maintenance Cost 8-15% of the development cost per year

Effort Distribution

Classes of Errors

Design
Code
Test
Other

Data
Interface

Logic/Control
Initialization

Computational

Project Duration Simulators ~ 20 months
AGSS - 30 months

*Based on FDD projects active between 1978 and 1985

23%
21%
30%
26%

27%
22%
20%
16%
15%

61 SEL-95-001

Appendix B. Detailed Reuse Analysis

During the last year of the independent assessment, the team delved more deeply into the reuse issue. They sought

to understand the different reuse approaches that have been used on the FORTRAN and Ada projects and to

determine their effect on the resulting products. Ultimately, they hoped to determine which improvements resulted

from the different approaches for managing and modifying the reusable code and which ones were due to

differences and limitations in the languages. This section presents the detailed results of this analysis, some of

which have been highlighted in section 3 of this report. The complete information is included here, because this

reuse analysis has not been documented elsewhere. The following subsections provide insight into the different

approaches to reuse, reuse library maintenance costs, the effect of different kinds of reuse on productivity, and the

validity of the currently used cost model for Ada projects.

B.1 Ada vs. FORTRAN Reuse Methods

The reuse approach used to develop the FORTRAN AGSS systems differs from that used to develop the Ada

telemetry simulator projects. In the FORTRAN projects, the application programmer links to reusable subsystems

from one of two large subsystem families (known as MTASS, for multimission three-axis-stabilized spacecraft, and

MSASS, for multimission spin-axis-stabilized spacecraft) and adds new modules which conform to the data set

specifications preordained by those subsystem interfaces. Maintenance programmers for the libraries of reusable

subsystems arc tasked to modify and update the master copy of each subsystem so that a single version of each can

meet the requirements of new missions while at the same time satisfying all previous client missions. This

backwards compatibility is important because AGSS systems must stay operational for the duration of a satellite

mission, which can be many years. Thus, the libraries are considered to be institutional software and maintenance is

funded indcpcndently from the development of each of the mission-specific AGSS projects.

The existence of single, centralized copies of the library subsystems for all users means that the individual

application programmers for each project do not have to be concerned with the internals of the subsystems; these

components arc not copied into each project library and are therefore not treated as mission-specific code. This

lowers the development burden by reducing the amount of code that must be handled by a project. For example, the

SAMPEX AGSS client application required only 27K new lines of code to be written but reported a delivered size

of 176K lines because of the subsystems it reused from MTASS.

The Ada projects, on the other hand, are constructed from generic components copied into each new project library

from the most similar prior project. Most of these components remain unmodified, although modification by a

project team is permissible because it poses no risk to central, shared copies. The project team therefore has the

burden of dircctly handling and studying the generics to determine their suitability and possible need for

modification. Any maintenance is the job of the project team since there is no separate dedicated team responsible

for upgrading a central copy of the components to meet new requirements. Further, there is no comprehensive

documentation of the generics or of the general telemetry simulator architecture that might compensate for the lack

of an expert library maintenance team and that might allow an Ada programming team to reuse components in the
same "black-box" fashion that the FORTRAN developers are able to do.

Because Ada allows more parameterization and generalization than FORTRAN, the reusable Ada generics take

advantage of this additional flexibility by allowing mission-tailored, instead of hard-coded, data sets to be defined

and passed among the subsystems. The different styles of reuse and the higher generality of the Ada components

explain why there was a milder drop in reuse when the change of domains occurred in the Ada product line as

compared with the FORTRAN projects. The Ada project team for the first spin-axis-stabilized mission was still

able to reuse a sizable portion of the lower-level three-axis generics, whereas almost none of the FORTRAN

subsystems that handle three-axis missions were used for the first spin-axis satellite. The FORTRAN developers

again achieved high levels of reuse in their projects by developing a separate complete subsystem library for

_ _ _ _. - I ;¢, .;_ i", L¸ • :t_,_,,_

63

IV ,- ITi'/;_

SEL-95-001

spin-axisspacecraft(MSASS)analogous to the library of three-axis subsystems (MTASS). Instead of having con-
trolled libraries of subsystems, the Ada systems themselves became the basis for future simulators in either domain.

An important distinction between the reuse styles adopted for the two languages is that the two FORTRAN libraries

must be continually augmented to handle new missions in their respective domains. It is the practice of the

FORTRAN maintainers to augment the subsystems as necessary by adding code for any new requirements rather

than by generalizing or modifying the existing code. This approach is more straightforward given the limitations of

FORTRAN and it also avoids the risk of introducing errors for existing clients. However, this also causes the

FORTRAN libraries to grow over time. Conversely, the Ada generics form a set of smaller components that

requires little or no further modification to handle missions in either domain. The Ada developers directly handle

the generics needed for each project and further generalize them only when necessary (such as by deleting

unnecessary dependencies between components). New requirements (which typically involve the simulation of new

spacecraft sensors and devices) are handled by mission-specific code rather than by changes to the reusable
components.

Because the separate effort to upgrade the FORTRAN subsystems is not reported by the individual projects, the

verbatim reuse percentages reported in the project data make it appear that the two languages are equally able to

express generalized functionality. However, further investigation revealed that, when the efforts of the separate
FORTRAN maintenance programmers are taken into consideration, the actual amount of modification to the Ada

generics from mission to mission is far less than in the FORTRAN subsystems.

Maintenance and configuration control disadvantages can result from having separate copies of the reusable

components in each client project's library. However, this has not been an issue with the Ada simulators, which are

smaller and have shorter operational phases than the larger AGSS projects. Nevertheless, this approach introduces

the cost of directly handling this software and means that the developers, with neither a library support team nor

comprehensive documentation (as yet), must study the internals of the reusable components to understand their

proper use and to determine if any enhancements are needed. The additional cost for this aspect of Ada reuse is

calculated through the comparison of"white-box" and "black-box" reuse presented in section B.3.

B.2 Adjusting for the FORTRAN Library Maintenance Costs

Because the additional effort expended on the part of the MTASS and MSASS library maintenance tasks benefits

each of the client FORTRAN AGSS projects, it is necessary to consider these hours when reporting the overall costs

and productivities of the recent AGSS projects. However, there is no entirely accurate way to apportion the MTASS

and MSASS hours across the client projects; effort data are collected at an inadequate level of detail to capture that

information. Nevertheless, a rough idea can be obtained by using that part of the MTASS/MSASS effort that is

spent doing enhancements. The total MTASS/MSASS effort for each client project can be calculated by totaling the

reported weekly effort data (evenly allocated among all active projects) for the appropriate maintenance group
during the time the client project was in active development. SEL data show that 90% of the MTASS/MSASS effort

is spent doing enhancements; therefore each project's MTASS/MSASS effort contribution can be reduced to 90% of

the total. Thus, the additional effort expended on behalf of each project using this allocation method ranges from
about 3.5K hours to more than 6K hours, with the later projects showing greater maintenance costs.

It is important, when assessing total cost, to include the library maintenance effort in the FORTRAN project totals.

To fail to do so would seriously underrepresent the actual cost of the FORTRAN AGSS development. On the other

hand, when using the data to model the cost of new, modified, or reuse-based development from the project point of
view, only the reported mission-specific effort should be used.

B.3 Computing the Productivity of Reuse

Conventionally in this environment, reuse is classified as either verbatim reuse or reuse with modification. Using
the technique developed by Bailey, _7 individual productivities of the different categories or modes of code

development/reuse in the FDD were estimated by deriving a set of simultaneous equations and then solving for the
unknown productivities. The effort for each project was expressed as the sum of the efforts to develop the various

SEL-95-001 64

amounts of code in each category (new, modified, verbatim). With sufficient data, it is possible to solve for the set

of productivities for the modes which most closely predict the actual effort required for each project.

A similar analysis was conducted for the Ada projects in the current study, and the results were comparable to

Bailey's earlier work. Also, a similar analysis was performed to solve for the corresponding productivities on the

FORTRAN projects. The best overall solutions for the productivities for new, reused with modification, and
verbatim reuse for both Ada and FORTRAN code are shown in Table B-I. The FORTRAN solutions were not as

stable as the Ada solutions, and they had to be constrained to prevent anomalous results.

Table B-1. FORTRAN vs. Ada Productivities (Statements per Hour)

for Code Development Modes

Category of Code Reuse FORTRAN Ada

New Code 1.2 1.1

Reuse with Modification 2.4 1.2

Verbatim Reuse 5.5 5.0

In the table, the productivities for both languages are nearly identical except for the "reuse with modification"

category, where the FORTRAN productivity is double that of Ada. This could indicate that FORTRAN units are

easier to modify than Ada units. However, this analysis concludes that the difference actually reflects the learning

curve required for reusing generic Ada code. When a project team needs to modify a part of the reusable software,

additional effort is required first to understand the code and its applicability, and then to generalize it further to

ensure future reusability.

As mentioned in section B.2, the verbatim reuse category in the FORTRAN projects denotes a different reuse

process than the verbatim reuse being performed in Ada. Ever since the availability of MTASS and MSASS, the

majority of the code reported by a FORTRAN project as reused verbatim has been from the reusable library

subsystems which are managed externally from the application developments. Instead of deducting the amount of

software contributed by the external libraries and reanalyzing the productivities for each development mode on the

remaining project-specific software, an additional mode of code development was defined: "black-box" verbatim

reuse. This is the reuse of software from externally maintained libraries, where the application programmer is not

required to learn or to pay attention to the internals of the reused code. This is in contrast to the alternate method of

verbatim reuse where the application programmer is responsible for deciding whether a particular component is

appropriate and reusable by studying and understanding its implementation. The term "white-box" has been

adopted to describe this style of verbatim reuse. Separating the verbatim reuse in this way allows a better
approximation of the overhead involved in learning, understanding, integrating, and testing software that can be

reused without change. It also provides a more equivalent basis for comparing the cost of verbatim reuse across the

languages.

Separation of the verbatim reuse category into black-box and white-box reuse for the later FORTRAN AGSS

projects where MTASS and MSASS were used yielded a more stable and well-behaved set of productivity estimates

for the development modes. As one might expect, the productivity for the new black-box verbatim reuse category
was very high. Depending on the group of projects included in the solution, some of the analyses showed it to be

essentially "infinite" (meaning that black-box statements can be "developed" for free, so the size of the reused

components has little or no effect on the reusing project's cost). This means that productiviy values for the other

categories would be unaffected even if the black-box verbatim statements were eliminated from the project totals.

Reuse-library-supplied statements were included because the current reporting style is to include them in project

totals. However, in the future it might make more sense to exclude them from project development estimates and

reported sizes, analogous to the way the size of a math library is ignored. It would still be important to budget for

the library maintenance task, however, and to understand that library maintenance remains an additional cost of

delivering FORTRAN AGSS projects. Eliminating the reporting of the FORTRAN library software which

65 SEL-95-001

masqueradesas zero-cost verbatim reuse would also bring the Ada and FORTRAN reuse factors more in line with
one another.

The productivities for the FORTRAN development modes with the addition of black-box verbatim reuse are shown

in Table B-2. There is no development mode corresponding to black-box verbatim reuse on the Ada projects.

Table B-2. Code Development Productivities Including Black-Box Reuse

Category of Code Reuse FORTRAN Ada

New Code 1.2 1.1

Reuse with Modification 2.4 1.2

White-Box Verbatim Reuse 4.0 5.0

Black-Box Verbatim Reuse 21.0 N/A

B.4 Comparing Reuse Factors with Existing Models

The current model used in the FDD for estimating the cost of reuse was developed based on empirical data available
in 1993.1_ It specifies that development by reuse in FORTRAN costs about 20% of the cost of new code

development, but that reuse in Ada costs about 30% of the cost of new code. These figures are the "reuse factors"

for each language that can be multiplied by the new code development costs to estimate the cost of delivering reused

software. This model suggests that it costs 50% more to reuse Ada over FORTRAN from the reusing project's point
of view.

The findings in this report suggest that the apparent advantage that FORTRAN reuse has over Ada reuse is created

by the highly productive black-box verbatim reuse used on FORTRAN projects, which is not available to the Ada

projects. The cost of the separate task which offloads the actual expense of the black-box code (i.e., the effort to
understand and modify the FORTRAN utility subsystems) is not included in these reuse cost estimates because it is

funded separately and available to all FORTRAN AGSS projects. However, because the separately funded cost of

maintaining the reusable libraries raises the true cost of the FORTRAN projects in a way that is not reflected by
these models, the reuse cost factors are not directly comparable.

A better way to look at the relative costs of reuse in the two languages is to consider the ratios of productivities

between new and reused code in each language, as was done in section B.3. These ratios appear to be nearly

identical (except for reuse with modification, where, in the FORTRAN case, a separate team performs the

modifications, and the productivity rates diverge accordingly), which suggests that similar reuse processes result in

similar productivity levels, regardless of language. In fact, it even appears that the per-line productivities are
comparable between the languages, which should further simplify future cost models.

SEL-95-001 66

Appendix C. Data Collection Instruments

As part of the independent assessment, the team attempted to capture and understand the perspectives of the FDD

software engineering staff. They conducted two surveys to gather this information. The first addressed only those

who had been directly exposed to Ada through work experience or training. The second addressed the entire

workforce. This appendix includes copies of these two data collection instruments.

• Figure C-1. Ada User's Survey

• Figure C-2. Ada at the FDD Questionnaire

67 SEL-95-O01

Ada User's Survey 1 October, 1993

1. How many years have you been a part of the FDD?

2. What was your principal training prior to joining the FDD? (astrodynamics, simulation, computer
science, mathematics, engineering, etc...)

3. How many years of FORTRAN work experience did you have before joining the FDD? How many
school (college) years?

4. How many years of Ada work experience did you have before joining the FDD? How many school
years?

5. How many years of C language work experience did you have before joining the FDD? How many
school years?

6. In what other languages can you (or could you at one time) program?

7. If you were leading the team to develop the next simulator, what language would you use? Why?
Under what circumstances would you use either of the other two languages?

8. If you were leading the team to develop the next AGSS, what language would you use? Why? Under
what circumstances would you use either of the other two languages?

. What other opinions do you have relative to the use of Ada, FORTRAN, or C in FDD software
developments? (Any comments on the impact of team size, schedule constraints, reuse constraints,
cost constraints, maintainability constraints, portability contraints, performance constraints, etc.?)

Figure C-1. Ada User's Survey

SEL-95-001 68

Ada at the FDD Questionnaire

1. Name (optional, but please see note at bottom)

2 For how many years have you been a part of the FDD?

3. What is your primary job? Circ/e one: Developer Maintainer Tester Manager Other:

4. What was your principal professional training or education major prior to joining the FDD?
Circle or write-in:

astrodynarnics astronomy aerospace business chemistry

computer science control theory engineering geophysics numerical science

mathematics music physics simulation operations research
other:

5. How many years of FORTRAN work experience, including school, have you had?

6. Have you ever been exposed to the Ada programming language? Circle one: Yes* No**

*If "yes," approximate year of first exposure: 19

*If "yes," c=rcle kinds of Ada experience:

professional training/classes/seminars school

on-the-job development or maintenance other

self-study

other

**If "no," c_rcJethe sources of information which have contributed the most to your impressions of Ada:

news items professional literature others in the FDD others outside of the FDD

job experiences conferences other other

7, In what languages other than Ada or FORTRAN can you (or could you at one time) program?
Circle or wnfe4n:

Algol Assembly APL Basic C C++

Euclid Lisp Modula Pascal PL-1 Prolog
Snobol

COBOL

Smalltalk

Note: Opinions or comments provided will only be associated with groups, such as developers, testers, etc., and will notbe

associated with individuals. Your name, in answer to question I, will be known only by the outside consultant and will be

used only in case it is necessary to contact you for clarification. These sheets will be kept offsite until the final report is

completed, after which they will be destroyed. Thank you for your time and cooperation.

Figure C-2. Ada at the FDD Questionnaire (1 of 2)

69 SEL-95-001

8. At the end of this study, a final report will be issued which will include discussion of the future of Ada at the

FDD. Circle your answers to the following and provide comments as indicated:

a. Do you think the use of Ada is appropriate at the FDD? Yes No Don't know Don't care

b. Do you think the use of Ada should be restricted at the FDD?

*If yes, describe appropriate and inappropriate uses of Ada:

Yes* No Don't know Don't care

c. Would you like to see the use of Ada increase at the FDD?

*If yes, describe additional areas where Ada can be used:

Yes* No Don't know Don't care

d. Would you like to see the use of Ada decrease at the FDD?

If yes, describe areas where Ada should be eliminated:

Yes* No Don't know Don't care

g. Many FDD personnel have strong opinions about Ada and its use here. We are particularly interested in any
comments and judgements you may have about the use of Ada at the FDD which you have not had the

opportunity to express in your previous responses. Please use the space below to summarize, as frankly as
possible, any additional opinions you have about Ada and its use at the FDD.

Figure C-2. Ada at the FDD Questionnaire (2 of 2)

SEL-95-001 70

Acronyms

AGSS

CDR

COMPASS

DLOC

DoD

EMS

EUVE

EUVEAGSS

EUVEDSIM

EUVETELS

FAST

FAST GTC

FASTELS

FDAS

FDD

FDDS

GENSIM

GOADA

GOES

GOESIM

GOOD

GRO

GRODY

GROSS

GSFC

GSS

ISTP

KSLOC

MSASS

attitude ground support system

critical design review

Combined Mission Planning and Attitude Support System

developed lines of code

Department of Defense

electronic message system

Extreme Ultraviolet Explorer

EUVE Attitude Ground Support System

EUVE Dynamics Simulator

EUVE Telemetry Simulator

Fast Auroral Snapshot Telescope

FAST General Torquer Command Utility

FAST Telemetry Simulator

Flight Dynamics Analysis System

Flight Dynamics Division

Flight Dynamics Distributed System

Generalized Simulator

GOES Dynamics Simulator in Ada

Geostationary Operational Environmental Satellite

GOES Telemetry Simulator

General Object-Oriented Design

Gamma Ray Observatory

GRO Dynamics Simulator in Ada

GRO Dynamics Simulator in FORTRAN

Goddard Space Flight Center

Generalized Applications Support Software

International Solar-Terrestrial Physics

thousand source lines of code

multimission spin-axis-stabilized spacecraft

71 SEL-95-001

MTASS

NASA

OO

OOD

PDR

POLAR

POWITS

SAMPEX

SAMPEXTS

SEL

SLOC

TDRSS

TOMS

TOMSTELS

TONS

UARS

UARSTELS

UIX

WIND

multimission three-axis-stabilized spacecraft

National Aeronautics and Space Administration

object-oriented

object-oriented design

preliminary design review

Polar Plasma Laboratory

WIND/POLAR Telemetry Simulator

Solar, Anomalous, and Magnetospheric Particle Explorer

SAMPEX Telemetry Simulator

Software Engineering Laboratory

source lines of code

Tracking and Data Relay Satellite System

Total Ozone Mapping Spectrometer

TOMS Telemetry Simulator

TDRSS Onboard Navigation System

Upper Atmosphere Research Satellite

UARS Telemetry Simulator

User Interface Executive

Interplanetary Physics Laboratory

SEL-95-001 72

References

1. NASA/GSFC Software Engineering Laboratory, SEL-94-005, An Overview of the Software Engineering
Laboratory, F. McGarry, G. Page, V. Basili, et al., December 1994

2. , SEL-93-003, "Impact of Ada in the Flight Dynamics Division: Excitement and Frustration," J.Bailey,
S.Waligora, M. Stark, Proceedings of the Eighteenth Annual Software Engineering Workshop, pp. 422-438,
December 1993

3. , SEL-81-305SPI, Ada Developers' Supplement to the Recommended Approach, L.Landis, R. Kester,
November 1993

4. , SEL-81-305, Recommended Approach to Software Developmen_ L. Landis, S. Waligora, F. McGarry,
etal., June 1992

5. , SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark, August 1986

6. Computer Sciences Corporation, CSC/TM-91/6065 (552-FDD-91/034) SEL Ada Reuse Study Report, R. Kester,
May 1991

7. NASA/GSFC Software Engineering Laboratory, SEL-90-003, ,4 Study of the Portability of an Ada System in the
Software Engineering Laboratory, L. Jun and S. Valett, June 1990

8. , SEL-91-003, ,4da Performance Study Report, E. Booth and M. Stark, July 1991

9. Goddard Space Flight Center, Flight Dynamics Division, 552-FDD-91/068ROUD0, ,4da Efficiency Guide,
E.Booth, August 1992

10. ,552-FDD-92/033 ROUD0 �Ida Size Study Report, S. Condon, M. Regardie, September 1992

11. NASA/GSFC Software Engineering Laboratory, SEL-93-002, Cost and Schedule Estimation Study Report,
S.Condon, M. Regardie, M. Stark, et al., November 1993

12. , SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory ,4da
Development Team, R. Murphy and M. Stark, October 1985

13. __, SEL-91-006, "Experiments in Software Engineering Technology," Proceedings of the Sixteenth ,4nnual

Software Engineering Workshop, F. McGarry and S. Waligora, December 1991

14. , SEL-82-1306 Annotated Bibliography of Software Engineering Laboratory Literature, D. Kistler,
J.Bristow, D. Smith, November1994

15. Institute for Defense Analysis, IDA Paper P-2899, "Comparing Ada and FORTRAN Lines of Code: Some
Experimental Results," T. Frazier, J. Bailey, M. Young, November1993

16. ANSI/MIL-STD t 815A, Reference Manual for the ,4da Programming Language, February 1983

17. Bailey, John W., .4 Component Factory for Software Source Code Re-engineering and Reuse, University of
Maryland, UMI 9234514, May 1992

18. Goddard Space Flight Center, Flight Dynamics Division, Ada Compilers on the IBM Mainframe (NAS8040)
Evaluation Report, L. Jun, January 1989

19. , IBM Ada/370 (Release 2.0.) Compiler Evaluation Report, L. Jun, September 1992, and Intermetrics
MVS/Ada Version 8.0 Compiler Evaluation Report, L. Jun, October1992

73 SEL-95-001

Standard Bibliography of SEL Literature

The technical papers, memorandums, and documents listed in this bibliography are organized into two groups. The

first group is composed of documents issued by the Software Engineering Laboratory (SEL) during its research and

development activities. The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop, September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer and C. E. Velez,
November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 3), W. J. Decker,

W.A. Taylor, et ai., July 1986

SEL-79-002, The Software Engineering Laboratory." Relationship Equations, K. Freburger and V. R. Basili,

May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in the Goddard

Space Flight Center (GSFC) Code 580 Software Design Environment, C. E. Goorevich, A. L. Green, and W. J.

Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November 1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System Evaluation, W. J.

Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software Systems, J. F. Cook and

F.E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering, V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium Scale Software

Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August 1982

75 . ._.._. SEL-95-001

PAC__ INTENTIO_IALLYBLABM<

SEL-81 - 110, Evaluation of an Independent Verification and Validation (IV& II) Methodology for Flight Dynamics,

G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora, F. E. McGarry, et al.,
June 1992

SEL-81-305SPI, Ada Developers' Supplement to the Recommended Approach, R. Kester and L. Landis,
November1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N. Card, and F. E.
McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the Software Engineering
Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP.) System Description (Revision 1.), W. A.
Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder, and F. E.
McGarry, October 1983

SEL-82-1306, Annotated Bibliography of Software Engineering Laboratory Literature, D. Kistler, J. Bristow, and
D. Smith, November 1994

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et al.,
February 1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F. E. McGarry, G. Page, et al.,
March 1984

SEL-83-003, Collected Software Engineering Papers: Volume 11,November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision 1), C. W. Doerflinger,
November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Laboratory (SEL), W. W.

Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis, F. E. McGarry, S. Waligora,
et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr., F. E. McGarry,
etal., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory Ada Development
Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume 111, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics, R. W. Selby, Jr., and
V. R. Basili, May 1985

SEL-95-001 76

SEL-85-005,Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and C. Antle,
December1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development, R. Wood and E. Edwards,
March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial, J. Buell and

P.Myers, July 1986

SEL-86-004, Collected Software Engineering Papers." Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software Development, S. Perry

etal., March 1987

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti, June 1987

SEL°87-004, Assessing the Ada ® Design Process and Its Implications." A Case Study, S. Godfrey, C. Brophy,

etal., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L. Esker, and Y. Shi,
November 1988

SEL°88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis, K. Quimby and
L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and C. Brophy,

September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation�Testing Phase Analysis,

K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard, C. Brophy,
November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users" Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture (Revision 1), R. Hendrick,

D.Kistler, and J. Valett, September 1992

77 SEL-95-001

SEL-89-301,Software Engineering Laborary (SEL) Database Organization and User's Guide (Revision 3),
L.Morusiewicz, February 1995

SEL-90-001, Database Access Manager for the Software Engineering Laboratory (DAMSEL) User's Guide,
M.Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project Description and Early
Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering Laboratory (SEL), L. O.
Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment Summary, T. McDermott
and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIlI, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop, November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules, W. Decker,
R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report, E. W. Booth and M. E.
Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume 1X, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December 199 !

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision 1), F. McGarry,
August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler and K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL) Database, G. Heller,
J.Valett, and M. Wild, March 1992

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop, December 1992

SEL-93-001, Collected Software Engineering Papers: Volume 3£1,November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark, et al.,
November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December 1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms, R. HencLrick, D. Kistler, and
J. Valett, February 1994

SEL-94-002, Software Measurement Guidebook, M. Bassman, F. McGarry, R. Pajerski, July 1994

SEL-94-003, C Style Guide, J. Doland and J. Valett, August 1994

SEL-94-004, Collected Software Engineering Papers: Volume XII, November 1994

SEL-94-005, An Overview of the Software Engineering Laboratory, F. McGarry, G. Page, V. Basili, et al.,
December 1994

SEL-95-001 78

SEL-94-006,Proceedings of the Nineteenth Annual Software Engineering Workshop, December 1994

SEL-95-001, Impact of Ada and Object-Oriented Design in the Flight Dynamics Division at Goddard Space Flight

Center, S. Waligora, J. Bailey, M. Stark, March 1995

SEL-RELATED LITERATURE

10Abd-E1-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for Extraction of Reusable

Components," Proceedings of the IEEE Conference on Software Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite Simulation: A Case

Study," Proceedings of the First International Symposium on Ada for the NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology," Program Transformation

and Programming Environments. New York: Springer-Verlag, 1984

IBailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource Expenditures," Proceedings

of the Fifth International Conference on Software Engineering. New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development Reusability," Proceedings

of the Eighth Annual National Conference on Ada Technology, March 1990

10Bailey ' j. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and Reuse," Proceedings of the

ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., "Models and Metrics for Software Management and Engineering," ASME Advances in Computer

Technology, January 1980, vol. I

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New York: IEEE

Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First Pan-Pacific

Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of Maryland, Technical Report

TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland, Technical Report

TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development," IEEE Software, January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and Resource Estimation

Problems?," Journal of Systems and Software, February 1981, vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, "A Reference Architecture for the Component Factory," ACM

Transactions on Software Engineering and Methodology, January 1992

10Basili, V., G. Caldiera, F. McGarry, et al., "The Soft'ware Engineering Laboratory--An Operational Software

Experience Factory," Proceedings of the Fourteenth International Conference on Software Engineering (ICSE 92),

May 1992

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software Engineering

Laboratory," Journal of Systems and Software, February 1981, vol. 2, no. 1

12Basili, V., and S. Green, "Software Process Evolution at the SEL," IEEE Software, July 1994

79 SEL-95-001

3Basili,V.R.,andN. M.Panlilio-Yap,"FindingRelationshipsBetweenEffortandOtherVariablesin theSEL,"
Proceedings of the International Computer Software and Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, .4 Study on Fault Prediction and Reliability Assessment in the SEL Environment,

University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Sottware Errors and Complexity: An Empirical Investigation,"

Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing SoRware Metrics in the Software Engineering

Laboratory," Proceedings of the A CM SIGMETRICS Symposium�Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Prototype Expert System for Software Engineering

Management," Proceedings of the IEEE/MITRE Expert Systems in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland, Technical
Report TR- 1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development," Proceedings of the

Workshop on Quantitative Software Models for Reliability, Complexity, and Cost. New York: IEEE Computer
Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and Environments,"

Proceedings of the 9th International Conference on Software Engineering, March 1987

5Basili, V. R., and H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment," Proceedings of the
Joint Ada Conference, March 1987

5Basili, V. R., and H. D. Rombach, "TAME: Integrating Measurement Into SoRware Environments," University

of Maryland, Technical Report TR- 1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented Sottware

Environments," IEEE Transactions on Software Engineering, June 1988

7Basili, V. R., and H. D. Rombach, Towards ,4 Comprehensive Framework for Reuse: A Reuse-Enabling

Software Evolution Environment, University of Maryland, Technical Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: Model-Based Reuse

Characterization Schemes, University of Maryland, Technical Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," Software Engineering Journal,

September 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic Software Metric

Set," Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE Computer
Society Press, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies," IEEE Transactions

on Software Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection and Analysis

Methodology," Proceedings of the NA TO Advanced Study Institute, August 1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strategies," IEEE Transactions on

Software Engineering, December 1987

SEL-95-001 80

9Basili,V.R.,andR.W.Selby,"ParadigmsforExperimentationand Empirical Studies in Software Engineering,"

Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering," IEEE

Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across FORTRAN Projects,"

IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data, University of

Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data," IEEE

Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives," Proceedings of the

Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment," Proceedings of the

Software Life Cycle Management Workshop, September 1977

lBasili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory," Proceedings of the

Second Software Life Cycle Management Workshop, August 1978

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the Local

Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development," Proceedings of the Third

International Conference on Software Engineering. New York: IEEE Computer Society Press, 1978

Bassman, M. J., F. McGarry, and R. Pajerski, Software Measurement Guidebook, NASA-GB-001-94, Software

Engineering Program, July 1994

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Implementation Concepts,"

Proceeding._ of Tri-Ada 1991, October 1991

10Booth, E. W.. and M. E. Stark, "Software Engineering Laboratory Ada Performance Study--Results and

Implications." Proceedings of the Fourth Annual NASA Ada User's Symposium, April 1992

10Briand. L C.. and V. R. Basili, "A Classification Procedure for the Effective Management of Changes During

the Maintenance Process," Proceedings of the 1992 IEEE Conference on Software Maintenance (CSM 92),
November 1992

10Briand" L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for Optimizing the Verification

and Testing Phases of Software Development," Proceedings of the Third IEEE International Symposium on

Software Reliability Engineering (ISSRE 92), October 1992

I 1Briand ' L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with Optimized Set

Reduction for Identifying High Risk Software Components, University of Maryland, Technical Report TR-3048,
March 1993

12Briand, L. C., V. R. Basili, Y. Kim, and D. R. Squire, "A Change Analysis Process to Characterize Software

Maintenance Projects", Proceedings of the International Conference on Software Maintenance, September 1994

9Briand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approach for Software Engineering Data

Analysis, University of Maryland, Technical Report TR-2672, May 1991

81 SEL-95-001

11Briand' L. C., S.Morasca,andV. R. Basili,"MeasuringandAssessingMaintainabilityat theEndof High
LevelDesign,"Proceedings of the 1993 IEEE Conference on Software Maintenance (CSM 93), November 1993

12Briand, L., S. Morasca, and V. R. Basili, Defining and Validationg High-Level Design Metrics, University of

Maryland, Technical Report TR-3301, June 1994

l lBriand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk Early in Software

Development," Proceedings of the Fifteenth International Conference on Software Engineering (ICSE 93),
May 1993

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-Oriented Design Methods,"

Proceedings of the Joint Ada Conference, March ! 987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the Implementation Phase of a

Large Ada Project," Proceedings of the Washington Ada Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer Sciences Corporation,
Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation," Computer Sciences
Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program," Annais do XVIII Congresso Nacional de Informatica,
October 1985

5Card, D. N., and W. W. Agresti, "Resolving the SoRware Science Anomaly," Journal of Systems and Software,
1987

6Card, D. N., and W. W. Agresti, "Measuring SoRware Design Complexity," Journal of Systems and Software,
June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design Practices," IEEE

Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of Flight Dynamics

Analysis System," Parts I and II, Computer Sciences Corporation, Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules," Computer Sciences
Corporation, Technical Memorandum, June 1984

5Card, D. N., F. E. McGarry, and G. T. Page, "Evaluating Software Engineering Technologies," IEEE

Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization," Proceedings of the Eighth

International Conference on Software Engineering. New York: IEEE Computer Society Press, 1985

IChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering Methodologies,"

Proceedings of the Fifth International Conference on Software Engineering. New York: IEEE Computer Society
Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing Software Prototypes,"
ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic Variables,"

Proceedings of the Seventh International Computer Software and Applications Conference. New York: IEEE
Computer Society Press, 1983

SEL-95-001 82

Doubleday,D.,ASAP: An Ada Static Source Code Analyzer Program, University of Maryland, Technical Report

TR-i 895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project," Proceedings of the 1988

Washington Ada Symposium, June 1988

5Jeffery, D. R., and V. Basili, Characterizing Resource Data." A Model for Logical Association of Software Data,

University of Maryland, Technical Report TR- 1848, May 1987

6jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Proceedings of the Tenth

International Conference on Software Engineering, April 1988

11Li ' N. R., and M. V. Zelkowitz, "An Information Model for Use in Software Management Estimation and

Prediction," Proceedings of the Second International Conference on Information Knowledge Management,
November ! 993

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering, University of Maryland,

Technical Report TR- 1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering Information Bases From Software

Process and Product Specifications," Proceedings of the 22nd Annual Hawaii International Conference on System

Sciences, January 1989

5McGarry, F. E., and W. W. Agresti, "Measuring Ada for Software Development in the Software Engineering

Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International Conference on System Sciences,

January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production Software Environment,"

Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality on the Software

Development Process and Product," Proceedings of the Hawaiian International Conference on System Sciences,

January 1985

3page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent Verification and Validation,"

Proceedings of the Eighth International Computer Software and Applications Conference, November 1984

12porter, A. A., L. G. Votta, Jr., and V. R. Basili, Comparing Detection Methods for Software Requirements

Inspections." A Replicated Experiment, University of Maryland, Technical Report TR-3327, July 1994

5Ramsey, C. L., and V. R. Basili, "An Evaluation of Expert Systems for Software Engineering Management,"

IEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage," Proceedings of the Eighth

International Conference on Software Engineering. New York: IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on Maintainability," IEEE

Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software, March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth Journal of Information and

Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial Case Study,"

Proceedings From the Conference on Software Maintenance, September 1987

83 SEL-95-001

6Rombach,H.D.,andL.Mark, "Software Process and Product Specifications: A Basis for Generating Customized

SE Information Bases," Proceedings of the 22nd Annual Hawaii International Conference on System Sciences,
January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance Improvement Program."

Lessons Learned in the SEL, University of Maryland, Technical Report TR-2252, May 1989

10Rombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control: Adding Maintenance

Measurement to the SEL," Journal of Systems and Software, May 1992

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings of the 1987 Conference on

Object-Oriented Programming Systems, Languages, and Applications, October 1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and Experience," Proceedings of the

21st Hawaii International Conference on System Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle Approach," Proceedings

of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X," Ada Letters, March/

April 1991

10Seidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters, March/April 1992

12Seidewitz, E., "Genericity versus Inheritance Reconsidered: Self-Reference Using Generics," Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Applications, October 1994

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Soft'ware Development Methodology,"

Proceedings of the First International Symposium on Ada for the NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Software in Ada," Proceedings of

the Eighth lt'ashington Ada Symposium, June 1991

8Stark, M.. "'On Designing Parametrized Systems Using Ada," Proceedings of the Seventh Washington Ada
Symposium. June 1990

11Stark, M.. "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies," Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse," Proceedings of TRI-Ada
1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," Proceedings of the Joint Ada
Conference, March 1987

10Straub ' p. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Software Specification Process,"

Proceedings of the Sixteenth International Computer Software and Applications Conference (COMPSAC 92),
September 1992

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada," Proceedings of the

Tenth International Conference of the Chilean Computer Science Society, July 1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Management Cycle Into the TAME

System, University of Maryland, Technical Report TR-2289, July 1989

SEL-95-001 84

10Tian,J.,A. Porter, and M. V. Zelkowitz, "An Improved Classification Tree Analysis of High Cost Modules

Based Upon an Axiomatic Definition of Complexity," Proceedings of the Third IEEE International Symposium on

Software Reliability Engineering (ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data, Data and Analysis

Center for Software, Special Publication, May 1981

10Valett, J. D., "Automated Support for Experience-Based Software Management," Proceedings of the Second

lrvine Software Symposium (1SS _92), March 1992

5Valett, J. D., and F. E. McGarry, "A Summary of Software Measurement Experiences in the Sottware Engineering

Laboratory," Proceedings of the 21st Annual Hawaii International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes: Some Data From

the Software Engineering Laboratory," IEEE Transactions on Software Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems," Proceedings of the

Joint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Proceedings of the Twelfth

Conference on the Interface of Statistics and Computer Science. New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science Research," Empirical

Foundations for Computer and Information Science (Proceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of the 26th Annual

Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of Systems and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax Editors,"

Information and Software Technology, April 1990

85 SEL-95-001

NOTES:

1This article also appears m SEL-82-004, Collected Software Engineering Papers: Volume L July 1982.

2This article also appears m SEL-83-003, Collected Software Engineering Papers: Volume 11, November 1983.

3This article also appears m SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985.

4This article also appears m SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986.

5This article also appears m SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987.

6This article also appears m SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988.

7This article also appears m SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989.

8This article also appears in SEL-90-005, Collected Software Engineering Papers: Volume Vlll, November 1990.

9This article also appears m SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991.

10This article also appears in SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992.

11This article also appears in SEL-93-001, Collected Software Engineering Papers: Volume XI, November 1993.

12This article also appears in SEL-94-004, Collected Software Engineering Papers: Volume,Ell, November 1994.

SEL-95-001 86

I Form ApprovedREPORT DOCUMENTATION PAGE oM8No.o7o4-o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlin_ltOn, VA 22202-4302, and to the Office of Mana_lemect and Budget, Paperwork Reduction Proiect/0704-0188t, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DA/I:::5 COVERED
March 1995 Contractor Report

4. TITLE AND SUBTITLE

Impact of Ada and Object-Oriented Design in the Flight Dynamics

Division at Goddad Space Flight Center

6. AUTHOR(S)

Software Engineering Laboratory

5. FUNDING NUMBERS

552

/IJ -j/- -;;
 3150

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Branch

Code 552

Goddard Space Flight Center

Greenbelt, Maryland

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA Aeronautics and Space Administration

Washington, D.C. 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

SEL-95-001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-189412

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABlUTY STATEMENT

Unclassified-Unlimited

Subject Category: 61

Report is available from the NASA Center for AeroSpace Information,

800 Elkridge Landing Road r Linthicum Heights, MD 21090; (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigatethe

effectiveness of software engineering technologies when applied to the development of applications software. The goals of

the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effects of

various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development

practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory

Series, a continuing series of reports that includes this document.

14. SUBJECT TERMS

Ada, Object-Oriented Design (OOD), Software Engineering

17. SECURITY CLASSIRCATION 18.SECURITY CLASSIRCATION
OF REPORT OF THIS PAGE

Unclassified1 lnclassified

NSN 7540-01-280"5500

19. SECURITY CLASSlRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

8fi
16. PRICE CODE

20. UMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)

